The Design and Analysis of Parallel Algorithms

Justin R. Smith
Preface

This book grew out of lecture notes for a course on parallel algorithms that I gave at Drexel University over a period of several years. I was frustrated by the lack of texts that had the focus that I wanted. Although the book also addresses some architectural issues, the main focus is on the development of parallel algorithms on “massively parallel” computers. This book could be used in several versions of a course on Parallel Algorithms. We tend to focus on SIMD parallel algorithms in several general areas of application:

- Numerical and scientific computing. We study matrix algorithms and numerical solutions to partial differential equations.
- “Symbolic” areas, including graph algorithms, symbolic computation, sorting, etc.

There is more material in this book than can be covered in any single course, but there are many ways this book can be used. I have taught a graduate course in parallel numerical algorithms by covering the material in:

1. The Introduction.
2. §2 of chapter 3 (page 57).
3. Chapter 4, and;

Another possible “track” through this book, that emphasizes symbolic algorithms, involves covering:

1. The Introduction;
2. Chapter 2;
3. and Chapter 6.

A graduate course on parallel algorithms in general could follow the sequence:

1. The Introduction;
2. Chapter 2 — for a theoretical background;
3. §§1 and 1.2 of chapter 5 — for a taste of some numerical algorithms;
4. §§1, 2, 2.1, 2.2, 2.3.1 3.5, and if time permits, 3.7.1 of chapter 6.

I welcome readers’ comments, and am particularly interested in reports of errors or suggestions for new topics or exercises. My address is:

Justin R. Smith
Department of Mathematics
Drexel University
Philadelphia, PA 19104
USA
and my electronic mail address is jsmith@drexel.edu. Although I will try to respond to readers’ comments, I regret that it will probably not be possible to respond to all of them.

I generally used the C* language as a kind of “pseudocode” for describing parallel algorithms. Although Modula* might have been more suitable than C* as a “publication language” for parallel algorithms, I felt that C* was better known in the computing community. In addition, my access to a C* compiler made it possible for me to debug the programs. I was able to address many issues that frequently do not arise until one actually attempts to program an algorithm. All of the source code in this book can actually be run on a computer, although I make no claim that the published source code is optimal.

The manuscript was typeset using \texttt{AMS-LaTeX} — the extension of \texttt{LaTeX} developed by the American Mathematical Society. I used a variety of machines in the excellent facilities of the Department of Mathematics and Computer Science of Drexel University for processing the \texttt{TeX} source code, and used MacDraw on a Macintosh Plus computer to draw the figures. The main font in the manuscript is Adobe Palatino — I used the \texttt{psfonts.sty} package developed by David M. Jones at the MIT Laboratory for Computer Science to incorporate this font into \texttt{TeX}.

Many of the symbolic computations and graphs were made using the Maple symbolic computation package, running on my own Macintosh Plus computer. Although this package is not object-oriented, it is very powerful. I am particularly impressed with the fact that the versions of Maple on microcomputers are of “industrial strength”.

\footnote{This will probably change as Modula* becomes more widely available.}
Acknowledgements

I am indebted to several people who read early versions of this manuscript and pointed out errors or made suggestions as to how to improve the exposition, including Jeffrey Popyack, Herman Gollwitzer, Bruce Char, David Saunders, and Jeremy Johnson. I am also indebted to the students of my M780 course in the Summer of 1992 who discovered some errors in the manuscript. This course was based upon a preliminary version of this book, and the students had to endure the use of a “dynamic textbook” that changed with time.

I would like to thank the proofreaders at Oxford University Press for an extremely careful reading of an early version of the manuscript, and many helpful suggestions.

I would also like to thank Christian Herter and Ernst Heinz for providing me with information on the Triton project at the University of Karlsruhe and the Modula* language, and Kenneth Traub for providing me with information on the Monsoon Project at M.I.T. I am indebted to Thinking Machines Corporation and the CMNS project for providing me with access to a CM-2 Connection Machine for development of the parallel programs that appear in this book.

Most of all, I am indebted to my wonderful wife Brigitte, for her constant encouragement and emotional support during this arduous project. Without her encouragement, I wouldn’t have been able to complete it. This book is dedicated to her.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Concepts</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Models of parallel computation</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1. Generalities</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2. Sorting on an EREW-SIMD PRAM computer</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3. Bitonic Sorting Algorithm</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4. Appendix: Proof of the 0-1 Principal</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5. Relations between PRAM models</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>5.1. Complexity Classes and the Parallel Processing Thesis</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>5.2. P-Completeness and Inherently Sequential Problems</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>5.3. Further reading.</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>5.4. Brent’s Theorem</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>5.5. SIMD Algorithms</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5.5.1. Doubling Algorithms</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5.5.2. The Brent Scheduling Principle</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>5.5.3. Pipelining</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5.5.4. Divide and Conquer</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5.6. MIMD Algorithms</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5.6.1. Generalities</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5.6.2. Race-conditions</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>5.6.3. Optimization of loops</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>5.6.4. Deadlocks</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>5.7. Comparison of the SIMD and MIMD models of computation</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Distributed-Memory Models</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2. Generic Parallel Algorithms</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>3. The Butterfly Network</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>3.1. Discussion and further reading</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>3.2. Description</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.3. Discussion and further reading</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>4. Cube-Connected Cycles</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5. Dataflow Computers</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>Examples of Existing Parallel Computers</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>1. Asynchronous Parallel Programming</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>1.1. Portable Programming Packages</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>1.1.1. Linda</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>1.1.2. p4</td>
<td>99</td>
</tr>
</tbody>
</table>
2.2. Definition and basic properties 182
2.3. The Fast Fourier Transform Algorithm 186
2.4. Eigenvalues of cyclic matrices 197
3. The JPEG Algorithm 200
4. Wavelets 201
4.1. Background 201
4.2. Discrete Wavelet Transforms 208
4.3. Discussion and Further reading 220
5. Numerical Evaluation of Definite Integrals 222
5.1. The one-dimensional case. 222
5.2. Higher-dimensional integrals 227
5.3. Discussion and Further reading 230
6. Partial Differential Equations 232
6.1. Elliptic Differential Equations 233
6.1.1. Basic concepts 233
6.1.2. Self-adjoint equations 242
6.1.3. Rate of convergence 244
6.2. Parabolic Differential Equations 250
6.2.1. Basic Methods 250
6.2.2. Error Analysis 252
6.2.3. Implicit Methods 255
6.2.4. Error Analysis 259
6.3. Hyperbolic Differential Equations 261
6.3.1. Background 261
6.3.2. Finite differences 262
6.4. Further reading 265

Chapter 6. A Survey of Symbolic Algorithms 267
1. Doubling Algorithms 267
1.1. General Principles 267
1.2. Recurrence Relations 273
1.3. Deterministic Finite Automata 275
1.4. Parallel Interpolation 278
2. The Euler Tour Algorithm 282
2.1. Parallel Tree Contractions 289
2.2. Shortest Paths 290
2.3. Connected Components 293
2.3.1. Algorithm for a CREW Computer 294
2.3.2. Algorithm for a CRCW computer 301
2.4. Spanning Trees and Forests 305
2.4.1. An algorithm for an inverted spanning forest 311
2.5. Minimal Spanning Trees and Forests 315
2.6. Cycles in a Graph 327
2.6.1. Definitions 327
2.6.2. A simple algorithm for a cycle basis 328
2.6.3. Lowest Common Ancestors 329
2.7. Further Reading 331
3. Parsing and the Evaluation of arithmetic expressions 333
3.1. Introduction 333
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>An algorithm for building syntax-trees</td>
<td>334</td>
</tr>
<tr>
<td>3.3</td>
<td>An algorithm for evaluating a syntax tree</td>
<td>338</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion and Further Reading</td>
<td>344</td>
</tr>
<tr>
<td>3.5</td>
<td>Appendix: Parenthesis-matching algorithm</td>
<td>348</td>
</tr>
<tr>
<td>3.6</td>
<td>Parallel searching</td>
<td>348</td>
</tr>
<tr>
<td>3.7</td>
<td>Sorting Algorithms for a PRAM computer</td>
<td>349</td>
</tr>
<tr>
<td>3.7.1</td>
<td>The Cole Sorting Algorithm — CREW version</td>
<td>349</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Example</td>
<td>356</td>
</tr>
<tr>
<td>3.7.3</td>
<td>The Cole Sorting Algorithm — EREW version</td>
<td>361</td>
</tr>
<tr>
<td>3.8</td>
<td>Detailed proof of the correctness of the algorithm</td>
<td>376</td>
</tr>
<tr>
<td>3.9</td>
<td>Expander Graphs</td>
<td>379</td>
</tr>
<tr>
<td>3.10</td>
<td>Introduction</td>
<td>382</td>
</tr>
<tr>
<td>3.11</td>
<td>Number-Theoretic Considerations</td>
<td>384</td>
</tr>
<tr>
<td>3.12</td>
<td>Discussion and further reading</td>
<td>398</td>
</tr>
<tr>
<td>3.13</td>
<td>Further reading</td>
<td>401</td>
</tr>
</tbody>
</table>

Chapter 7. Probabilistic Algorithms

1. Introduction and basic definitions
1.1. Numerical algorithms
1.1.1. Monte Carlo Integration
1.2. Monte Carlo algorithms
1.3. Las Vegas algorithms
2. The class textbfRNC
2.1. Work-efficient parallel prefix computation
2.2. The Valiant and Brebner Sorting Algorithm
2.3. Maximal Matchings in Graphs
2.3.1. A Partitioning Lemma
2.3.2. Perfect Matchings
2.3.3. The General Case
2.4. The Maximal Independent-Set Problem
2.4.1. Definition and statement of results.
2.4.2. Proof of the main results.
3. Further reading

Appendix A. Solutions to Selected Exercises

Appendix. Bibliography

Appendix B. Index

Appendix. Index
CHAPTER 1

Basic Concepts

1. Introduction

Parallel processing algorithms is a very broad field — in this introduction we will try to give some kind of overview.

Certain applications of computers require much more processing power than can be provided by today’s machines. These applications include solving differential equations and some areas of artificial intelligence like image processing. Efforts to increase the power of sequential computers by making circuit elements smaller and faster have approached basic physical limits.

Consequently, it appears that substantial increases in processing power can only come about by somehow breaking up a task and having processors work on the parts independently. The parallel approach to problem-solving is sometimes very different from the sequential one — we will occasionally give examples of parallel algorithms that convey the flavor of this approach.

A designer of custom VLSI circuits to solve some problem has a potentially large number of processors available that can be placed on the same chip. It is natural, in this context, to consider parallel algorithms for solving problems. This leads to an area of parallel processing known as the theory of VLSI algorithms. These are parallel algorithms that use a large number of processors that each have a small amount of local memory and that can communicate with neighboring processors only along certain predefined communication lines. The number of these communication lines is usually very limited.

The amount of information that can be transmitted through such a communication scheme is limited, and this provides a limit to the speed of computation. There is an extensive theory of the speed of VLSI computation based on information-flow arguments — see [160].

Certain tasks, like low level image processing, lend themselves to parallelization because they require that a large number of independent computations be carried out. In addition, certain aspects of computer design lead naturally to the question of whether tasks can be done in parallel.

For instance, in custom VLSI circuit design, one has a large number of simple processing elements available and it is natural to try to exploit this fact in developing a VLSI to solve a problem.

We illustrate this point with an example of one of the first parallel algorithms to be developed and applied. It was developed to solve a problem in computer vision — the counting of distinct objects in a field of view. Although this algorithm has some applications, we present it here only to convey the flavor of many parallel algorithms. It is due to Levialdi (see [100]).
We are given a two-dimensional array whose entries are all 0 or 1. The array represents pixels of a black and white image and the 1’s represent the darkened pixels. In one of the original applications, the array of pixels represented digitized images of red blood cells. Levialdi’s algorithm solves the problem:

How do we efficiently count the connected sets of darkened pixels?

Note that this is a more subtle problem than simply counting the number of darkened pixels. Levialdi developed a parallel algorithm for processing the array that shrinks the objects in the image in each step — it performs transformations on the array in a manner reminiscent of Conway’s well-known Game of Life:

Suppose \(a_{i,j} \) denotes the \((i,j)\)th pixel in the image array during some step of the algorithm. The \((i,j)\)th entry of the array in the next step is calculated as

\[
h[h(a_{i,j-1} + a_{i,j} + a_{i+1,j-1}) + h(a_{i,j} + a_{i+1,j-1} - 1)]
\]

where \(h \) is a function defined by:

\[
h(x) = \begin{cases}
1, & \text{if } x \geq 1; \\
0, & \text{otherwise.}
\end{cases}
\]

This algorithm has the effect of shrinking the connected groups of dark pixels until they finally contain only a single pixel. At this point the algorithm calls for removing the isolated pixels and incrementing a counter.

We assume that each array element \(a_{i,j} \) (or pixel) has a processor (or CPU) named \(P_{i,j} \) associated with it, and that these CPU’s can communicate with their neighbors. These can be very simple processors — they would have only limited memory and only be able to carry out simple computations — essentially the computations contained in the equations above, and simple logical operations. Each processor would have to be able to communicate with its neighbors in the array. This algorithm can be carried out in cycles, where each cycle might involve:

1. Exchanging information with neighboring processors; or
2. Doing simple computations on data that is stored in a processor’s local memory.

In somewhat more detail, the algorithm is:

\[
C \leftarrow 0
\]

\[
\text{for } k = 1 \text{ to } n \text{ do in parallel}
\]

\[
P_{i,j} \text{ receives the values of } \\
\quad a_{i+1,j}, a_{i-1,j}, a_{i+1,j+1}, a_{i+1,j-1} \\
\quad a_{i-1,j+1}, a_{i,j-1}, a_{i,j+1} \\
\quad \text{from its neighbors (if it already contains the value of } a_{i,j} \\
\quad \text{if } a_{i,j} = 1 \text{ and all neighboring elements are } 0 \text{ then} \\
\quad C \leftarrow C + 1
\]

\[
\text{Perform the computation in equation (1) above} \quad \text{/* do in parallel */}
\]

end for

Here is an example — we are assuming that the \(i \) axis is horizontal (increasing from left-to-right) and the \(j \) axis is vertical. Here is an example of the Levialdi algorithm. Suppose the initial image is given by figure 1.1.
The result of the first iteration of the algorithm is given by figure 1.2. In the next step the lone pixel in the upper right is removed and a counter incremented. The result is depicted in figure 1.3. After a sufficient number of steps (in fact, \(n \) steps, where \(n \) is the size of the largest side of the rectangle) the screen will be blank, and all of the connected components will have been counted.

This implementation is an example of a particularly simple form of parallel algorithm called a \textit{systolic algorithm}\footnote{See the discussion on page 16 for a (somewhat) general definition of systolic algorithms. Also see [96].}. Another example of such an algorithm is the following:

Suppose we have a one-dimensional array (with \(n \) elements) whose entries are processing elements. We assume that these processing elements can carry out the basic operations of a computer — in this case it must be able to store at least two numbers and compare two numbers. Each entry of this array is connected to its two neighboring entries by communication lines so that they can send a number to their neighbors — see figure 1.4.

Now suppose each processor has a number stored in it and we want to sort these numbers. There exists a parallel algorithm for doing this in \(n \) steps — note that it is well-known that a sequential sort using comparisons (other than a radix-sort) requires \(\Omega(n \operatorname{lg} n) \) steps. Here \(\operatorname{lg} \) denote the logarithm to the base 2.
In odd-numbered steps odd-numbered processors compare their number with that of their next higher numbered even processors and exchange numbers if they are out of sequence.

In even-numbered steps the even-numbered processors carry out a similar operation with their odd-numbered neighbors (this is a problem that first appeared in [91]). See figure 1.5 for an example of this process.

Note that this algorithm for sorting corresponds to the bubble sort algorithm when regarded as a sequential algorithm.

At first glance it might seem that the way to develop the fastest possible parallel algorithm is to start with the fastest possible sequential algorithm. This is very definitely not true, in general. In fact, in many cases, the best parallel algorithm for a problem doesn’t remotely resemble the best sequential algorithm. In order to understand this phenomena it is useful to think in terms of computation networks for computations.

For instance the expression \((a + b + c)/(e + f - g)\) can be represented by the directed graph in figure 1.6.

The meaning of a computation-network is that we try to perform a computation at each vertex of the graph and transmit the result of the computation along the single exit edge. See §5.4 on page 42 for a rigorous definition of a computation network. The computation cannot be performed until data arrives at the vertex along the incoming directed edges. It is not hard to see that the computations begin at the vertices that have no incoming edges and ends at the vertex (labeled the root in figure 1.6) that has no outgoing edges.

We will briefly analyze the possibilities for parallelization presented by this network. Suppose that each vertex of the network has a number associated with it, called its value. The numbers attached to the leaf vertices are just the numerical values of the variables \(a\) through \(g\) — we assume these are given.

For a non-leaf vertex the number attached to it is equal to the result of performing the indicated operation on the values of the children of the vertex. It is not hard to see that the value of the root of the tree will equal the value of the

\[\frac{a + b + c}{e + f - g} \]
Figure 1.5. The odd-even sorting algorithm

![Odd-Even Sorting Algorithm](image)

Figure 1.6. Computation network

![Computation Network](image)
FIGURE 1.7. Computation network for sequential addition

whole expression. It is also not hard to see that to compute the value of a given non-leaf vertex, it is first necessary to compute the values of its children — so that the whole computation proceeds in a bottom up fashion. We claim that:

If a computation is to be done sequentially the execution time is very roughly proportional to the number of vertices in the syntax tree. If the execution is to be parallel, though, computations in different branches of the syntax tree are essentially independent so they can be done simultaneously. It follows that the parallel execution time is roughly proportional to the distance from the root to the leaves of the syntax tree.

This idea is made precise by Brent’s Theorem (5.17 on page 42). The task of finding a good parallel algorithm for a problem can be regarded as a problem of remodeling the computation network in such a way as to make the distance from the root to the leaves a minimum. This process of remodeling may result in an increase in the total number of vertices in the network so that the efficient parallel algorithm would be very inefficient if executed sequentially. In other words a relatively compact computation network (i.e. small number of vertices) might be remodeled to a network with a large total number of vertices that is relatively balanced or flat (i.e. has a shorter distance between the root and the leaves).

For instance, if we want to add up 8 numbers a_1, \ldots, a_8, the basic sequential algorithm for this has the computation network given in figure 1.7.

This represents the process of carrying out 8 additions sequentially. We can remodel this computation network to get figure 1.8. In this case the total execution-time is 3 units, since the distance from the root of the tree to the leaves is 3. When we remodel these computation-graphs and try to implement them on parallel
computers, we encounter issues of *interconnection topology*—this is a description of how the different processors in a parallel computer communicate with each other. It is not hard to see that the linear array of processors used in the odd-even sorting algorithm depicted in figure 1.5 on page 5 would have a hard time implementing the addition-algorithm shown in figure 1.8. The ideal situation would be for the communication-patterns of the processors to be identical to the links of the computation graph. Although this ideal configuration is not always possible, there are many interconnection topologies that are suitable for a wide variety of problems—see chapter 2, particularly §3 on page 57 through §4 on page 77.

Assuming an ideal interconnection topology, we get an algorithm for adding 2^k numbers in k steps, by putting the numbers at the leaves of a complete binary tree. Figure 1.9 shows this algorithm adding $8 = 2^3$ numbers in 3 steps.

As simple as this algorithm for adding 2^k numbers is, it forms the basis of a whole class of parallel algorithms—see chapter 6.

Note that, since we can add n numbers in $\lg n$ steps, with sufficiently many processors, we can do matrix multiplication of $n \times n$ matrices in $\lg n$ steps. See 1.1 on page 137 for the details. Consequently we can also perform other operations derived from matrix multiplication rapidly. For instance, we can find the distance between all pairs of vertices in a graph in $O(\lg^2 n)$-steps—see 2.4 on page 291 for the details.

While it is clear that certain tasks, like matrix addition, can be done rapidly in parallel it doesn’t follow that all tasks have this property. This leads to the question of whether there exist inherently sequential problems—problems that can’t necessarily be done faster in parallel.

From the discussion connected with the example given above one might get the impression that many unbounded parallel algorithms have an execution time that is $O(\lg^k n)$ for some value of k. This turns out to be the case—for instance, many algorithms are loosely based upon the example given above.

This phenomena is so widespread that Nicholas Pippenger has defined a class of problems called NC. These are problems that can be solved on a parallel computer (like that in the preceding example) $O(\lg^k n)$-time using a polynomial number of processors (it seems reasonable to impose this restriction on the number of processors—in addition many problems can be rapidly solved in parallel if an unlimited number of processors are available). A rigorous definition is given in §5.1 on page 34. In general, a problem is called parallelizable if it is in NC. Since any NC problem can be sequentially solved in polynomial time (by simulating a

Figure 1.8. Remodeled computation network
Figure 1.9. Sum of 8 numbers in 3 steps
PRAM computer by a sequential one) it follows that $\textbf{NC} \subseteq \textbf{P}$. The natural question at this point is whether $\textbf{NC} = \textbf{P}$ — do there exist any inherently sequential problems? This question remains open at present but there are a number of interesting things one can say about this problem. The general belief is that $\textbf{NC} \neq \textbf{P}$ but no one has come up with an example of an inherently sequential problem yet. A number of problems are known to be \textbf{P}-complete. Roughly speaking, a polynomial-time sequential problem is called \textbf{P}-complete if any other polynomial-time sequential problem can be transformed into an instance of it — see page 38. If a fast parallel algorithm can be found for any \textbf{P}-complete problem, then fast parallel versions can be found for all polynomial-time sequential algorithms. See § 5.2 in chapter 2 for examples and a discussion of the theoretical issues involved.

Chapter 2 discusses various unbounded parallel models of computation and Batcher’s sorting algorithm. We discuss the distinction between “Procedure-level” and “Data-level” parallelism, and the question of whether “super-linear” speedup of a sequential algorithm is possible. We give comparisons of the so-called Concurrent-I/O and Exclusive-I/O models (where the “I/O” in question is between processors and the shared random access memory).

We also discuss some theoretical questions of when efficient parallel algorithms exist. These questions all involve the class \textbf{NC} mentioned above and its relations with the class of polynomial-time sequential problems \textbf{P}. We will discuss the relations between \textbf{NC} and $\textbf{PLogspace}$-sequential problems — known as the Parallel Processing Thesis, originally due to Fortune and Wyllie. We will also discuss potential candidates for inherently sequential problems here.

In addition, we discuss some of architectures of existing parallel computers and how algorithms are developed for these architectures. These architectures include:

- the Butterfly Network
- the Hypercube
- Shuffle-Exchange networks and
- Cube-Connected Cycles

We also briefly discuss dataflow computers, and issues connected with the question of how memory is accessed in network computers and the Granularity Problem.

Chapter 4 discusses some concrete examples of parallel computers and programming languages. It shows how architectural considerations influence programming languages. It considers some of the languages for the Sequent Symmetry and the Connection Machine in some detail.

The programming constructs used on the Sequent provide examples of how one programs MIMD computers in general. The use of semaphores and synchronization primitives like \texttt{cobegin} and \texttt{coend} are discussed in this connection. We also discuss the LINDA system for asynchronous parallel programming. It has the advantage of simplicity, elegance, and wide availability.

We also discuss various portable packages for performing MIMD computing using existing languages like FORTRAN and C — see § 1.1 on page 95.

We conclude our material on coarse-grained MIMD algorithms with a discussion of automatic parallelization of algorithms (“Parallelizing compilers”) and look at some of the research being done in this area.
The C* language for the Connection Machine is a model for programming SIMD machines in general. We use it as a kind of pseudo-code for describing SIMD algorithms in the remainder of the text.

Chapter 5 considers numeric applications of parallel computing:

- Systems of linear equations. We discuss iterative techniques for solving systems of linear equations.
- Matrix operations. We discuss the Pan-Reif matrix-inversion algorithm as an example of an extraordinarily inefficient sequential algorithm that can be efficiently parallelized.
- The Fourier Transform. We develop the FFT algorithm and give a few applications.
- Wavelet transforms. This is a new area, related to the Fourier Transform, that involves expanding input-functions (which may represent time-series or other phenomena) in a series whose terms are fractal functions. Wavelet transforms lend themselves to parallel computations — in some respects to a greater extent than Fourier Transforms. We present parallels algorithms for wavelet transforms.
- Numerical integration. We give several parallel algorithms for approximately evaluating definite integrals.
- Numeric solutions to partial differential equations — including techniques peculiar to elliptic, parabolic, and hyperbolic differential equations.

Chapter 6 considers several classes of non numeric parallel algorithms, including:

1. A general class of algorithms that may be called doubling algorithms. All of these roughly resemble the algorithms for adding 8 numbers given in this introduction. In general, the technique used for adding these 8 numbers can be used in performing any associative operation. A large number of operations can be expressed in these terms:
 - The solution of linear recurrences.
 - Parsing of linear languages (with applications to pattern-recognition and the design of front-ends to compilers).
2. searching and various sorting algorithms including that of Cole and the Ajtai, Komlós, Szemerédi sorting algorithm.
3. Graph-theoretic algorithms like minimal spanning tree, connected components of a graph, cycles and transitive closure.
5. Probabilistic algorithms including Monte Carlo Integration, and some symbolic algorithms. We introduce the class textbf{RNC}, of problems that have parallel solutions that involve random choices, and whose expected execution time (this term is defined on page 405) is in \(O(\log^k n) \) for \(k \) some integer, and for \(n \) equal to the complexity-parameter of the problem.

Exercises.
1.1. Prove the correctness of the algorithm on page 59 for forming the cumulative sum of 2^k numbers in k steps.
CHAPTER 2

Models of parallel computation

1. Generalities

In this section we discuss a few basic facts about parallel processing in general. One very basic fact that applies to parallel computation, regardless of how it is implemented, is the following:

CLAIM 1.1. Suppose the fastest sequential algorithm for doing a computation with parameter n has execution time of $T(n)$. Then the fastest parallel algorithm with m processors (each comparable to that of the sequential computer) has execution time $\geq T(n)/m$.

The idea here is: If you could find a faster parallel algorithm, you could execute it sequentially by having a sequential computer simulate parallelism and get a faster sequential algorithm. This would contradict the fact that the given sequential algorithm is the fastest possible. We are making the assumption that the cost of simulating parallel algorithms by sequential ones is negligible.

This claim is called the "Principle of Unitary Speedup".

As usual, the parameter n represents the relative size of the instance of the problem being considered. For instance, if the problem was that of sorting, n might be the number of items to be sorted and $T(n)$ would be $O(n \lg n)$ for a sorting algorithm based upon comparisons.

As simple as this claim is, it is a bit controversial. It makes the tacit assumption that the algorithm in question is deterministic. In other words, the algorithm is like the usual idea of a computer program — it performs calculations and makes decisions based on the results of these calculations.

There is an interesting area of the theory of algorithms in which statement 1.1 is not necessarily true — this is the theory of randomized algorithms. Here, a solution to a problem may involve making random "guesses" at some stage of the calculation. In this case, the parallel algorithm using m processors can run faster than $m \times$ the speed of the sequential algorithm ("Super-unitary speedup"). This phenomenon occurs in certain problems in which random search is used, and most guesses at a solution quickly lead to a valid solution, but there are a few guesses that execute for a long time without producing any concrete results.

We will give an example of this phenomenon. Although it is highly oversimplified, it does illustrate how super unitary speedup can occur.

Suppose there are a 100 possible approaches to an AI-type search problem and:

1. 99 out of the 100 possibilities arrive at a solution in 1 time unit.
2. 1 of the possibilities runs for 1000 time units, and then fails.

The expected execution-time of a single (sequential) attempt to find a solution is the average of all of these times, or 10.99 time-units.
If we attack this problem with a parallel computer that has 2 processors that try distinct possibilities, the expected time (and even the worst-case time) is 1 unit, since at least one of these two distinct possibilities will be a fast solution. We, consequently, see a super-unitary speedup in the parallel algorithm. In other words the expected\footnote{Recall that the expected running-time of an algorithm like the one in the example is the average of actual running times, weighted by probabilities that these running times occur.} running-time of the algorithm is divided by > 10, which is much greater than the ratio of processors.

The opponents of the concept of super-unitary speedups (including the author) would argue that the original sequential algorithm was not optimal — and that the optimal sequential algorithm would have attempted two possible solutions with two distinct processes, run concurrently. A sequential algorithm that created two processes would have a running time of 2 units. The speedup that results by going to the sample parallel algorithm is 2, which is exactly equal to the ratio of processors. Thus, by modifying the sequential algorithm used, the validity of 1.1 is restored.

In [128], Parkinson argues that super-unitary speedup is possible, and in [49] Faber Lubeck White argue that it is not. See [98], [101], and [114], for more information about this phenomenon.

We will will concentrate on deterministic algorithms in this text, so that we will assume that super-unitary speedup is essentially impossible.

The next question we consider is how the instructions to the processors are handled.

In this section we will consider some simple algorithms that can be implemented when we have a SIMD computer in which every processor can access common RAM. In general, a computer in which many processors can access common RAM in a single program-step is called the PRAM model of computer. This is one of the oldest models of parallel processing to be considered, although there have never been any large parallel computers that implement it. The PRAM model is a kind of mathematical idealization of a parallel computer that eliminates many of the low-level details and allows a researcher to concentrate on the “purely parallel” aspects of a problem.

Traditionally, the PRAM model of computation has been regarded as more of theoretical than practical interest. This is due to the fact that it requires large numbers of processors to be physically connected to the same memory location. The two examples cited above (the Sequent and the Encore Multimax) aren’t an exception to this statement: they only have small numbers of processors. Several researchers are exploring the possibility of physically realizing of PRAM computers using optical interfaces — see [109].

There exist several different models of program control. In [51], Flynn listed several basic schemes:

- **SIMD** Single Instruction Multiple Data. In this model the processors are controlled by a program whose instructions are applied to all of them simultaneously (with certain qualifications). We will assume that each of the processors has a unique number that is “known” to the processor in the sense that instructions to the parallel computer can refer to processor numbers. An example of this type of machine is:
1. GENERALITIES

The Connection Machine (models CM-1 and CM-2), from Thinking Machines Corporation. This is used as a generic example of a SIMD computer in this text.

A seemingly more powerful model is:

MIMD Multiple Instruction Multiple Data. In this model processors can each have independent programs that are read from the common RAM. This model is widely used in several settings:

1. Coarse-grained parallelism — this is a form of parallel computing that closely resembles *concurrent programming* in that it involves processes that run *asynchronously*. Several commercial parallel computers are available that support this model of computation, including the Sequent Balance and Symmetry and the Encore Multimax. Many interesting issues arise in this case. The data-movement and communications problems that occur in all parallel computation are more significant here because the instructions to the processors as well as the data must be passed between the common memory and the processors. Due to these data-movement problems, commercial MIMD computers tend to have a relatively small number of processors (≈ 20). In general, it is easier to program a MIMD machine if one is only interested in a very limited form of parallelism — namely the formation of processes. Conventional operating systems like UNIX form separate processes to carry out many functions, and these processes *really* execute in parallel on commercially-available MIMD machines. It follows that, with one of these MIMD machines, one can reap some of the benefits of parallelism without explicitly doing any parallel programming. For this reason, most of the parallel computers in commercial use today tend to be MIMD machines, run as general-purpose computers.

On the surface, it would appear that MIMD machine are strictly more powerful than SIMD machines with the same number of processors. Interestingly enough, this is not the case — it turns out that SIMD machines are more suited to performing computations with a very *regular* structure. MIMD machines are not as suited to solving such problems because their processors must be *precisely synchronized* to implement certain algorithms — and this synchronization has a cost that, in some cases, can dominate the problem. See §1.1.1, and particularly 5.23 for a discussion of these issues.

Pure MIMD machines have no hardware features to guarantee synchronization of processors. In general, it is not enough to simply load multiple copies of a program into all of the processors and to start all of these copies at the same time. In fact many such computers have hardware features that tend to *destroy* synchronization, once it has been achieved. For instance, the manner in which memory is accessed in the Sequent Symmetry series, generally causes processes to run at different rates even if they are synchronized at some time. Many Sequents even have processors that run at different clock-rates.

2. The BBN Butterfly Computer — this is a computer whose architecture is based upon that of the shuffle-exchange network, described in section 3.2, on page 71.
Three other terms that fill out this list are:

SISD Single Instruction, Single Data. This is nothing but conventional sequential computing.

MISD This case is often compared to computation that uses Systolic Arrays. These are arrays of processors that are developed to solve specific problems — usually on a single VLSI chip. A clock coordinates the data-movement operations of all of the processors, and output from some processors are pipelined into other processors. The term “Systolic” comes from an analogy with an animal’s circulatory system — the data in the systolic array playing the part of the blood in the circulatory system. In a manner of speaking, one can think of the different processors in a systolic array as constituting “multiple processors” that work on one set of (pipelined) data. We will not deal with the MISD case (or systolic arrays) very much in this text. See [96] for a discussion of systolic computers.

SIMD-MIMD Hybrids This is a new category of parallel computer that is becoming very significant. These machines are also called SAMD machines (Synchronous-Asynchronous Multiple Data). The first announced commercial SAMD computer is the new Connection Machine, the CM-5. This is essentially a MIMD computer with hardware features to allow:
- Precise synchronization of processes to be easily achieved.
- Synchronization of processors to be maintained with little or no overhead, once it has been achieved (assuming that the processors are all executing the same instructions in corresponding program steps). It differs from pure MIMD machines in that the hardware maintains a uniform “heartbeat” throughout the machine, so that when the same program is run on all processors, and all copies of this program are started at the same time, it is possible to the execution of all copies to be kept in lock-step with essentially no overhead. Such computers allow efficient execution of MIMD and SIMD programs.

Here are some systems of this type:

1. The Paragon system from Intel. (Also called the iPSC-860.)
2. The SP-1 from IBM. This is essentially a networked set of independent processors, each running its own copy of Unix and having its own disk space. Logically, it looks like a set of workstations that communicate through Ethernet connections. The thing that makes this system a “parallel computer” is that the processors are networked together in a way that looks like Ethernet to a programmer, but actually has a much higher transfer rate.
3. The Triton Project, at the University of Karlsruhe (Germany). The Triton Project is currently developing a machine called the Triton/1 that can have up to 4096 processors.

Flynn’s scheme for classifying parallel computers was somewhat refined by Hindler in 1977 in [64]. Hindler’s system for classifying parallel computers involves three pairs of integers:

\[T(C) = < K \times K', D \times D', W \times W' > \]

where:
1. **K**: the number of *processor control units* (PCU’s). These are portions of CPU’s that interpret instructions and can alter flow of instructions. The number \(K \) corresponds, in some sense, to the number of instruction-streams that can execute on a computer.

2. \(K' \): The number of processor control units that can be pipelined. Here, pipelining represents the process of sending the output of one PCU to the input of another without making a reference to main memory. A MISD computer (as described above) would represent one in which \(K' > K \).

3. \(D \): The number of arithmetic-logical units (ALU’s) controlled by each PCU. An ALU is a computational-element — it can carry out arithmetic or logical calculations. A SIMD computer would have a \(K \)-number of 1 and a \(D \) number that is \(> 1 \).

4. \(D' \): The number of ALU’s that can be pipelined.

5. \(W \): The number of bits in an ALU word.

6. \(W' \): The number of pipeline segments in all ALU’s controlled by a PCU or in a single processing element.

Although Hndler’s scheme is much more detailed than Flynn’s, it still leaves much to be desired — many modern parallel computers have important features that do not enter into the Hndler scheme at all. In most case, we will use the much simpler Flynn scheme, and we will give additional details when necessary.

With the development of commercially-available parallel computers, some new terms have come into common use:

Procedure-level parallelism: This represents parallel programming on a computer that has a relatively small number of processors, and is usually a MIMD-machine. Since the number of processors is small, each processor usually does a large chunk of the computation. In addition, since the machine is usually MIMD each processor must be programmed with a separate program. This is usually done in analogy with *concurrent programming* practices — a kind of *fork-statement* is issued by the main program and a procedure is executed on a separate processor. The different processors wind up executing *procedures* in parallel, so this style of programming is called *procedure-level parallelism*. It has the flavor of concurrent programming (where there is real concurrency) and many standard concurrent programming constructs are used, like semaphores, monitors, and message-passing.

Data-level parallelism: This represents the style of parallel programming that is emphasized in this book. It is used when there is a large number of processors on a machine that may be SIMD or MIMD. The name ‘data-level parallelism’ is derived from the idea that the number of processors is so great that the data can be broken up and sent to different processors for computations — originally this referred to a *do*-loop in FORTRAN. With a large number of processors you could send each iteration of the loop to a separate processor. In contrast to procedure-level parallelism, where you broke the code up into procedures to be fed to different processors, here you break up the data and give it to different processors.

This author feels that these terms are not particularly meaningful — they are only valid if one does parallel programming in a certain way that is closely related to ordinary sequential programming (i.e. the terms arose when people tried to...

\(^2\) For instance, the CM-5 computer mentioned above.
parallelize sequential programs in a fairly straightforward way). The terms are widely used, however.

2. Sorting on an EREW-SIMD PRAM computer

The next issue we might consider in classifying parallel processors, is how memory is accessed.

DEFINITION 2.1. A PRAM computer follows the EREW scheme of memory access if, in one program step, each memory location can be written or read by at most a single processor.

Consider the sorting algorithm discussed in the introduction. It isn’t hard to see that it is optimal in the sense that it will always take at least \(n \) steps to sort \(n \) numbers on that computer. For instance, some numbers might start out \(n - 1 \) positions away from their final destination in the sorted sequence and they can only move one position per program step. On the other hand it turns out that the PRAM-EREW computer described above can sort \(n \) numbers in \(O(\lg^2 n) \) program steps using an old algorithm due to Batcher. This difference in execution time throws some light on the fundamental property of the PRAM model of computation: there is an unbounded flow of information. In other words even if only one processor can access one memory location at a time it is very significant that all processors can access all of the available memory in a single program step.

Batcher’s sorting algorithm involves recursively using the Batcher Merge algorithm, which merges two sequences of length \(n \) in time \(O(\lg n) \).

In order to discuss this algorithm, we must first look at a general result that is indispensable for proving the validity of sorting algorithms. This is the 0-1 Principle — already alluded to in the exercise at the end of the introduction. See § 2 in chapter 28 of [35] for more information. This result applies to sorting and merging networks, which we now define.

DEFINITION 2.2. A comparator is a type of device (a computer-circuit, for instance) with two inputs and two outputs:

\[
\begin{array}{c}
\text{IN}_1 \\
\text{IN}_2 \\
\text{Comparator} \\
\text{OUT}_1 \\
\text{OUT}_2
\end{array}
\]

such that:

- \(\text{OUT}_1 = \min(\text{IN}_1, \text{IN}_2) \)
- \(\text{OUT}_2 = \max(\text{IN}_1, \text{IN}_2) \)

The standard notation for a comparator (when it is part of a larger network) is the more compact diagram:

\[
\begin{array}{c}
\text{IN}_1 \\
\text{IN}_2 \\
\text{Comparator} \\
\text{OUT}_1 \\
\text{OUT}_2
\end{array}
\]

A comparator network is a directed graph with several special properties:
1. Data (numbers) can flow along the edges (in their natural direction). You can think of these edges as “pipes” carrying data, or “wires”.

2. MODELS OF PARALLEL COMPUTATION
3. Bitonic Sorting Algorithm

In this section we will discuss one of the first parallel sorting algorithms to be developed.

Definition 3.1. A sequence of numbers will be called bitonic if either of the following two conditions is satisfied:

- It starts out being monotonically increasing up to some point and then becomes monotonically decreasing.
- It starts out being monotonically decreasing up to some point and then becomes monotonically increasing.

A sequence of 0’s and 1’s will be called clean if it consists entirely of 0’s or entirely of 1’s.

For instance the sequence \(\{4, 3, 2, 1, 3, 5, 7\} \) is bitonic. We will present an algorithm that correctly sorts all bitonic sequences. This will turn out to imply an efficient algorithm for merging all pairs of sorted sequences, and then, an associated algorithm for sorting all sequences.
DEFINITION 3.2. Given a bitonic sequence of size \(\{a_0, \ldots, a_{n-1}\} \), where \(n = 2m \), a **bitonic halver** is a comparator network that performs the following sequence of compare-exchange operations:

\[
\text{for } i \leftarrow 0 \text{ to } m - 1 \text{ do in parallel} \\
\text{if } (a_i < a_{i+m}) \text{ then swap}(a_i, a_{i+m})
\]

endfor

Figure 2.2 shows a bitonic halver of size 8.

Note that a bitonic halver performs some limited sorting of its input (into ascending order). The following proposition describes the precise sense in which sorting has been performed:

PROPOSITION 3.3. Suppose \(\{a_0, \ldots, a_{n-1}\} \), where \(n = 2m \) is a bitonic sequence of 0's and 1's, that is input to a bitonic halving network, and suppose the output is \(\{b_0, \ldots, b_{n-1}\} = \{r_0, \ldots, r_{m-1}, s_0, \ldots, s_{m-1}\} \). Then one of the two following statements applies:

- The sequence \(\{r_0, \ldots, r_{m-1}\} \) consists entirely of 0's and the sequence \(\{s_0, \ldots, s_{m-1}\} \) is bitonic, or
- The sequence \(\{r_0, \ldots, r_{m-1}\} \) is bitonic, the sequence \(\{s_0, \ldots, s_{m-1}\} \) consists entirely of 1's.

Consequently, the smallest element of the lower half of the output is \(\geq \) the largest element of the upper half.

The two cases are distinguished by the number of 1's that were in the original input.

PROOF. We have four cases to contend with:

1. The input first increases and later decreases, and has a preponderance of 1's:
 \[
 \{0_0, \ldots, 0_{\alpha-1}, 1_{\alpha}, \ldots, 1_{m-1}, \ldots, 1_{\beta}, 0_{\beta+1}, \ldots, 0_{n-1}\}
 \]

 where \(\beta - \alpha \geq m - 1 \) or \(\beta \geq \alpha + m - 1 \), or \(n - 1 - \beta \leq m - 1 - \alpha \). This inequality implies that when we compare 0's in the upper half of the input with 1's in the lower half, each 0 will be compared with a 1 (i.e., there will...
be enough 1’s) and, therefore, will be swapped with it. A straightforward computation shows that the output will be
\[\{0_0, \ldots, 0_{\alpha-1}, 1_\alpha, \ldots, 1_{\beta-m+1}, 0_{\beta-m+2}, \ldots, 0_{m-1}, 1_m, \ldots, 1_{n-1}\} \]
so the conclusion is true.

2. The input first decreases and later increases, and has a preponderance of 1’s:
\[\{1_0, \ldots, 1_{\alpha-1}, 0_\alpha, \ldots, 0_{m-1}, \ldots, 0_\beta, 1_{\beta+1}, \ldots, 1_{n-1}\} \]
where \(\beta - \alpha < m \). In this case each 0 in the lower half of the input will also be compared with a 1 in the upper half, since \(\beta \leq \alpha + m - 1 \). The output is
\[\{0_0, \ldots, 0_{\beta-1}, 1_\beta, \ldots, 1_{\alpha-m+1}, 0_{\alpha-m+2}, \ldots, 0_{m-1}, 1_m, \ldots, 1_{n-1}\} \]
The two cases with a preponderance of 0’s follow by symmetry. \(\square \)

It is not hard to see how to completely sort a bitonic sequence of 0’s and 1’s:

Algorithm 3.4. Bitonic Sorting Algorithm. Let \(n = 2^k \) and let \(\{a_0, \ldots, a_{n-1}\} \) be a bitonic sequence of 0’s and 1’s. The following algorithm sorts it completely:

for \(i \leftarrow k \) **downto** 1 **do** in parallel

Subdivide the data into \(2^{k-i} \) disjoint sublists of size \(2^i \)
Perform a Bitonic Halving operation on each sublist

endfor

In the first iteration the “sublists” in question are the entire original input.
Since this correctly sorts all bitonic sequences of 0’s and 1’s, and since it is a sorting network, the 0-1 Principle implies that it correctly sorts all bitonic sequences of numbers.
Figure 2.3 shows a bitonic sorting network. Since the bitonic halving operations can be carried out in a single parallel step (on an EREW computer, for instance), the running time of the algorithm is $O(\lg n)$, using $O(n)$ processors.

Proof. Each Bitonic Halving operation leaves one half of its data correctly sorted, the two halves are in the correct relationship with each other, and the other half is bitonic. It follows that in phase i, each sublist is either sorted, or bitonic (but in the proper sorted relationship with the other sublists). In the end the intervals will be of size 1, and the whole list will be properly sorted. □

Here is an example of the bitonic sorting algorithm:

Example 3.5. We set n to 8. The input data is:

$$\{1, 2, 3, 6, 7, 4, 2, 1\}$$

and we will sort in ascending order. After the first bitonic halving operation we get

$$\{1, 2, 2, 1, 7, 4, 3, 6\}$$

Now we apply independent bitonic halving operations to the upper and lower halves of this sequence to get

$$\{1, 1, 2, 2, 3, 4, 7, 6\}$$

In the last step we apply bitonic halving operations to the four sublists of size 2 to get the sorted output (this step only interchanges the 6 and the 7)

$$\{1, 1, 2, 2, 3, 4, 6, 7\}$$

Now we have a fast algorithm for sorting bitonic sequences of numbers. Unfortunately, such sequences are very rare in the applications for sorting. It turns out, however, that this bitonic sorting algorithm gives rise to a fast algorithm for merging two arbitrary sorted sequences. Suppose we are given two sorted sequences $\{a_0, \ldots, a_{m-1}\}$ and $\{b_0, \ldots, b_{m-1}\}$. If we reverse the second sequence and concatenate it with the first, forming

$$\{a_0, \ldots, a_{m-1}, b_{m-1}, \ldots, b_0\}$$

which is bitonic. This give rise to the following Batcher Merge algorithm:

Algorithm 3.6. **Batcher Merge.** Suppose $\{a_0, \ldots, a_{m-1}\}$ and $\{b_0, \ldots, b_{m-1}\}$ are two sorted sequences, where $m = 2^{k-1}$. Then the following algorithms merges them together:

1. **Preparation step.** Reverse the second input-sequence and concatenate it with the first, forming

$$\{a_0, \ldots, a_{m-1}, b_{m-1}, \ldots, b_0\}$$

2. **Bitonic sort step.**

   ```plaintext
   for $i \leftarrow k$ downto 1 do in parallel
   Subdivide the data into $2^{k-1}$ disjoint sublists of size $2^i$
   Perform a Bitonic Halving operation on each sublist
   endfor
   ```

The result is a correctly-sorted sequence.
This merge algorithm executes in $O(\lg n)$ steps, using $O(n)$ processors. It is now straightforward to come up with an algorithm for sorting a sequence of n numbers on an EREW-PRAM computer with n processors. We will also analyze its running time. Suppose $T(n)$ represents the time required to sort $n = 2^k$ data-items.

Algorithm 3.7. Batcher Sort

1. Sort right and left halves of the sequence (recursively). This runs in $T(2^{k-1})$-time (assuming that the right and left halves are sorted in parallel).
2. Perform a Batcher Merge (3.6) of the two sorted halves.

The overall running time satisfies the relation $T(2^k) = T(2^{k-1}) + c_1(k-1) + c_2$. Here c_1 is equal to the constant factors involved in the Merge algorithm and c_2 is the total contribution of the constant factors in the unshuffle and shuffle-steps, and the last step. We get

$$T(2^k) = \sum_{j=1}^{k} (c_1(j-1) + c_2) = c_1\frac{(k-1)(k-2)}{2} + c_2k = O(k^2)$$

Since $n = 2^k$, $k = \lg n$ and we get $T(n) = O(\lg^2 n)$.

Exercises.

3.1. Find examples of PRAM and networked parallel computers that are commercially available. What programming languages are commonly used on these machines?

3.2. Is it possible for a sorting algorithm to *not* be equivalent to a sorting network? What operations would the algorithm have to perform in order to destroy this equivalence?

3.3. Prove that the odd-even sorting algorithm on page 5 works. Hint: Use the 0-1 principle.

3.4. Consider the example of super-unitary speedup on page 13. Is such super-unitary speedup *always* possible? If not, what conditions must be satisfied for it to happen?

3.5. At about the time that he developed the Bitonic Sorting Algorithm, and the associated merging algorithm, Batcher also developed the **Odd-Even Merge Algorithm**.

1. Assume that we have two sorted sequences of length n: $\{A_i\}$ and $\{B_i\}$. Unshuffle these sequences forming four sequences of length $n/2$: $\{A_{2j-1}\}, \{A_{2j}\}, \{B_{2j-1}\}, \{B_{2j}\}$;
2. (Recursively) merge $\{A_{2j-1}\}$ with $\{B_{2j-1}\}$ forming $\{C_i\}$ and $\{A_{2j}\}$ with $\{B_{2j}\}$ forming $\{D_i\}$;
3. Shuffle $\{C_i\}$ with $\{D_i\}$ forming $\{C_1, D_1, C_2, D_2, \ldots C_n, D_n\}$;
4. Sorting this result requires at most 1 parallel step, interchanging C_i with D_{i-1} for some values of i.

The correctness of this algorithm depends upon the lemma:

Lemma 3.8. Let n be a power of 2 and let A_1, \ldots, A_n and B_1, \ldots, B_n be two sorted sequences such that $A_1 \leq B_1$. Merge the sequences A_1, A_3, A_5, \ldots and B_1, B_3, B_5, \ldots to form C_1, \ldots, C_n and the sequences A_2, A_4, A_6, \ldots and B_2, B_4, B_6, \ldots to form D_1, \ldots, D_n. Now shuffle the C-sequence with the D-sequence to get $C_1, D_1, C_2, D_2, \ldots C_n, D_n$. Then sorting this last sequence requires, at most interchanging C_i with D_{i-1} for some values of i.

Here is an example: Suppose the original A-sequence is 1, 5, 6, 9 and the original B-sequence is 2, 3, 8, 10. The sequence of odd A’s is 1, 6 and the sequence of even A’s is 5, 9. The sequence of odd B’s is 2, 8 and the sequence of even B’s is 3, 10. The result of merging the odd A’s with the odd B’s is the sequence of C’s — this is 1, 2, 6, 8. Similarly the sequence of D’s is 3, 5, 9, 10. The result of shuffling the C’s with the D’s is 1, 3, 2, 5, 6, 9, 8, 10. Sorting this sequence only involves interchanging $C_2 = 2$ and $D_1 = 3$ and $D_3 = 9$ and $C_4 = 8$.

Prove this lemma, using the 0-1 Principal.

4. Appendix: Proof of the 0-1 Principal

We begin by recalling the definition of *monotonically increasing functions*:

Definition 4.1. A real-valued function f is called *monotonically increasing* if, whenever $x \leq y$, then $f(x) \leq f(y)$.

For instance $f(x) = x$ or x^2 are monotonically increasing functions. These functions (and 0-1 comparator networks) have the following interesting property:

Proposition 4.2. Let $\{a_0, \ldots, a_{k-1}\}$ be a set of numbers that are input to a network, N, of comparators, and let $\{b_0, \ldots, b_{k-1}\}$ be the output. If $f(x)$ is any monotonically increasing function, the result of inputting $\{f(a_0), \ldots, f(a_{k-1})\}$ to N will be $\{f(b_0), \ldots, f(b_{k-1})\}$.

In other words, the way a comparator network permutes a set of numbers is not affected by applying a monotonically increasing function to them. This is intuitively clear because:

- the decisions that a comparator network makes as to whether to permute two data items are based solely upon the relative values of the data items;
- and monotonically increasing functions preserve these relative value relationships.

Proof. We use induction on the number of comparators in the comparator network. If there is only one comparator in the network, then each data item must
traverse at most one comparator. In this case, the proof is clear:
\[
\min(f(x), f(y)) = f(\min(x, y))
\]
\[
\max(f(x), f(y)) = f(\max(x, y))
\]

Now suppose the conclusion is true for all comparator networks with \(n \) comparators. If we are given a comparator network with \(n + 1 \) comparators, we can place one comparator, \(C \), adjacent to the input-lines and regard the original network as a composite of this comparator, and the subnetwork, \(N \setminus C \), that remained after we removed it. The notation \(A \setminus B \) represents the set-difference of the sets \(A \) and \(B \).

We have just shown that comparator \(C \) (i.e., the one that was closest to the input lines in the original network) satisfies the conclusion of this result. It follows that the input-data to \(N \setminus C \) will be \(f(\text{output of } C) \). The inductive hypothesis implies that the rest of the original network (which has \(n \) comparators) will produce output whose relative order will not be modified by applying the function \(f \).

Corollary 4.3. If a comparator network correctly sorts all input-sequences drawn from the set \{0, 1\}, then it correctly sorts any input-sequence of numbers, so that it constitutes a sorting network.

Similarly, if a comparator-network whose inputs are subdivided into two equal sets correctly merges all pairs of 0-1-sequences, then it correctly merges all pairs of number-sequences.

Proof. If we have \(k \) inputs \(\{a_0, \ldots, a_{k-1}\} \), define the \(k \) monotonically increasing functions:
\[
f_i(x) = \begin{cases} 0 & \text{if } x < a_i \\ 1 & \text{if } x \geq a_i \end{cases}
\]
The conclusion follows immediately from applying 4.2, above, to these monotonically increasing functions.

5. Relations between PRAM models

In this section we will use the sorting algorithm developed in the last section to compare several variations on the PRAM models of computation. We begin by describing two models that appear to be substantially stronger than the EREW model:

CREW — Concurrent Read, Exclusive Write. In this case any number of processors can read from a memory location in one program step, but at most one processor can write to a location at a time. In some sense this model is the one that is most commonly used in the development of algorithms.

CRCW — Concurrent Read, Concurrent Write. In this case any number of processors can read from or write to a common memory location in one program step. The outcome of a concurrent write operation depends on the particular model of computation being used (i.e. this case breaks up into a number of sub-cases). For instance, the result of a concurrent write might be the boolean \(\text{OR} \) of the operands; or it might be the value stored by the lowest numbered processor attempting the write operation, etc.

This model of computation is more powerful than the CREW model — see § 2.3 in chapter 6 (on page 293) for an example of a problem (connected
components of a graph) for which there exists an improved algorithm using the CRCW model. The Hirschberg-Chandra-Sarawate algorithm runs on a CREW computer in $O(\lg^2 n)$ time and the Shiloach-Vishkin algorithm runs on a CRCW computer in $O(\lg n)$ time. There is no known algorithm for this problem that runs on a CREW computer in $O(\lg n)$ time.

It is a somewhat surprising result, due to Vishkin (see [167]) that these models can be effectively simulated by the EREW model (defined in 2.1 on page 18). The original statement is as follows:

Theorem 5.1. If an algorithm on the CRCW model of memory access executes in α time units using β processors then it can be simulated on the EREW model using $O(\alpha \lg^2 n)$ time and β processors. The RAM must be increased by a factor of $O(\beta)$.

This theorem uses the Batcher sorting algorithm in an essential way. If we substitute the (equally usable) EREW version of the Cole sorting algorithm, described in §3.7.3 in chapter 6 (see page 357) we get the following theorem:

Theorem 5.2. Improved Vishkin Simulation Theorem If an algorithm on the CRCW model of memory access executes in α time units using β processors then it can be simulated on the EREW model using $O(\alpha \lg n)$ time and β processors. The RAM must be increased by a factor of $O(\beta)$.

Incidentally, we are assuming the SIMD model of program control.

The algorithm works by simulating the read and write operations in a single program step of the CRCW machine.

CRCW Write Operation. This involves sorting all of the requests to write to a single memory location and picking only one of them per location. The request that is picked per memory location is the one coming from the processor with the lowest number — and that request is actually performed.

Suppose that processor i wants to write to address $a(i)$ ($0 \leq i \leq \beta - 1$).

1. Sort the pairs $\{(a(i),i), 0 \leq i \leq \beta - 1\}$ in lexicographic order using the Batcher sorting algorithm (or the Cole sorting algorithm on page 357, for the improved version of the theorem) presented in the last section. Call the resulting list of pairs $\{(a(j),j)\}$.
2. Processor 0 writes in $a(j_0)$ the value that processor j_0 originally intended to write there. Processor k ($k > 0$) tests whether $a(j_{k-1}) = a(j_k)$. If not it writes in $a(j_k)$ the value that processor j_k originally intended to write there.

Here is an example of the simulation of a CRCW-write operation:

<table>
<thead>
<tr>
<th>Processor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$D(i)$</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Here $D(i)$ is the data that processor i wants to write to location $a(i)$. This is converted into a list of pairs:

$(0,2), (6,1), (3,2), (1,3), (5,4), (7,5), (7,6), (0,7)$

This list is sorted by the second element in each pair:

$(0,7), (1,3), (2,0), (3,2), (5,4), (6,1), (7,5), (7,6)$
Suppose the \(i\)th pair in the sorted list is called \((a(j_i), j_i)\), and the memory in the \(i\)th processor is called \(M_i\). These pairs are processed via the following sequence of operations:

<table>
<thead>
<tr>
<th>Processor</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(M_0 \leftarrow D(7) = 0)</td>
</tr>
<tr>
<td>1</td>
<td>Test (a(j_1) = 1 \neq a(j_0) = 0) and do (M_1 \leftarrow D(3) = 6)</td>
</tr>
<tr>
<td>2</td>
<td>Test (a(j_2) = 2 \neq a(j_1) = 1) and do (M_2 \leftarrow D(0) = 3)</td>
</tr>
<tr>
<td>3</td>
<td>Test (a(j_3) = 3 \neq a(j_2) = 2) and do (M_3 \leftarrow D(2) = 5)</td>
</tr>
<tr>
<td>4</td>
<td>Test (a(j_4) = 5 \neq a(j_3) = 3) and do (M_5 \leftarrow D(4) = 7)</td>
</tr>
<tr>
<td>5</td>
<td>Test (a(j_5) = 6 \neq a(j_4) = 5) and do (M_6 \leftarrow D(1) = 4)</td>
</tr>
<tr>
<td>6</td>
<td>Test (a(j_6) = 7 \neq a(j_5) = 6) and do (M_5 \leftarrow D(6) = 9)</td>
</tr>
<tr>
<td>7</td>
<td>Test (a(j_7) = a(j_6) = 7) and do nothing</td>
</tr>
</tbody>
</table>

CRCW Read Operation. Here \(a(i)(0 \leq i \leq \beta - 1)\) denotes the address from which processor \(i\) wants to read in the CRCW machine.

1. Identical to step 1 in the Write Operation. In addition introduce an auxiliary \(\beta \times 3\) array denoted \(Z\).
 For \(i, 0 \leq i \leq \beta - 1\): \(Z(i, 0)\) contains the content of memory address \(a(j_i)\) at the end of the read-operation.
 \(Z(i, 1)\) contains \textbf{YES} if the content of \(a(j_i)\) is already written in \(Z(i, 1)\), and \textbf{NO} otherwise. It is set to \textbf{NO} before each simulated CRCW read-operation.
 \(Z(i, 2)\) contains the content of address \(a(i)\) at the end of the read-operation.

2. Processor 0 copies the content of \(a(j_0)\) into \(Z(0, 0); Z(0, 1) \leftarrow \text{YES}\). If \(a(j_i) \neq a(j_{i-1})\) then processor \(j_i\) copies the content of \(a(j_i)\) into \(Z(j_i, 0)\); \(Z(j_i, 1) \leftarrow \text{YES}\). The array now has the unique values needed by the processors. The next step consists of \textit{propagating} these values throughout the portions of \(Z(0, *)\) that correspond to processors reading from the same location. This is accomplished in \(\lg n\) iterations of the following steps (for processors \(0 \leq i \leq \beta - 1\)):
 \(k(i) \leftarrow 0\) (once, in the first iteration);

 Wait until \(Z(i, 1)\) is turned to \textbf{YES};

 while \((i + 2^{k(i)} \leq \beta - 1\) and \(Z(i + 2^{k(i)}, 1) = \text{NO})\ do

 \(Z(i + 2^{k(i)}, 1) \leftarrow \text{YES}\);

 \(Z(i + 2^{k(i)}, 0) \leftarrow Z(i, 0)\);

 \(k(i + 2^{k(i)}) \leftarrow k(i) + 1\);

 \(k(i) \leftarrow k(i) + 1; Z(j_i, 2) \leftarrow Z(i, 0)\);

 endwhile

 Note that the EREW design of the computer makes it necessary for us to have \textit{separate counters} — the \(k(i)\) — for each of the processors.

 This operation copies the values that have been read from memory as many times as are necessary to satisfy the original read-requests. The final step consists in having the processors read \(Z(*, 2)\).

 Here is an example of the simulation of a CRCW-read operation:
2. MODELS OF PARALLEL COMPUTATION

<table>
<thead>
<tr>
<th>Processor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reads from</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$D(i)$</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

In this example D_i is the data that processor i initially contains. The first step is the same as in the simulation of the CRCW-write operation. The set of desired read-operations is converted into a list of pairs:

$(2,0), (6,1), (7,2), (1,3), (5,4), (7,5), (1,6), (0,7)$

This list is sorted by the second element in each pair:

$(0,7), (1,3), (1,6), (2,0), (5,4), (6,1), (7,2), (7,5)$

Now we set up the Z array. Initially it looks like the following:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(i,0)$</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>$Z(i,1)$</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>$Z(i,2)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The first processor copies $D(a(j_0))$ into position $Z(0,0)$. Every other processor tests whether $a(j_i) \neq a(j_{i-1})$ and, if the values are not equal, copies its value of $D(a(j_i))$ into $Z(i,0)$. Each position of the Z-array that receives one of the $a(i)$ is marked by having its value of $Z(i,1)$ set to YES. We also set up the variables $k(i)$. We get the following array:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(i,0)$</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$Z(i,1)$</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>$Z(i,2)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$k(i)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Now we begin the iterations of the algorithm. After the first iteration we get

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(i,0)$</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$Z(i,1)$</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>$Z(i,2)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$k(i)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

In this particular example the iterations are completed in the first step. No computations occur in the remaining (2) iterations. In the last step of the algorithm the data is copied into $Z(*,2)$.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(i,0)$</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$Z(i,1)$</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>$Z(i,2)$</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$k(i)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Exercises.
5.1. Modify the CRCW Write phase of the simulation algorithm described above (page 26) so that, whenever multiple processors attempt to write numbers to the same simulated location, their sum is actually written.³

Theoretical Issues

5.1. Complexity Classes and the Parallel Processing Thesis. In this chapter we will be concerned with various theoretical issues connected with parallel processing. We will study the question of what calculations can be efficiently done in parallel and in what sense. We present the so-called Parallel Processing Thesis of Fortune and Wyllie — see [52]. It essentially shows that execution-time on a parallel computer corresponds in some sense to space (i.e., memory) on a sequential computer. The arguments used by Fortune and Wyllie also give some insight into why the execution time of many parallel algorithms is a power of a logarithm of the complexity of the problem.

One of the most interesting theoretical questions that arise in this field is whether there exist inherently sequential problems. These are essentially computations for which it is impossible to find parallel algorithms that are substantially faster than the fastest sequential algorithms. This is a subtle question, because there are many problems that appear to be inherently sequential at first glance but have fast parallel algorithms. In many cases the fast parallel algorithms approach the problem from a completely different angle than the preferred sequential algorithms. One of the most glaring examples of this is the problem of matrix inversion, where:

1. the fastest sequential algorithm (i.e., a form of Gaussian Elimination) only lends itself to a limited amount of parallelization (see the discussion below, on page 41);
2. the (asymptotically) fastest parallel algorithm would be extremely bad from a sequential point of view.

This should not be too surprising — in many cases the fastest sequential algorithms are the ones that reduce the amount of parallelism in the computations to a minimum.

First it is necessary to make precise what we mean by a parallel algorithm being substantially faster than the corresponding sequential algorithm. Here are some of the algorithms that have been considered so far:

1. Forming cumulative sums of \(n \) numbers. The sequential algorithm has an execution time of \(O(n) \). The parallel algorithm has an execution time of \(O(\lg n) \) using \(O(n) \) processors;
2. Sorting \(n \) numbers by performing comparisons. The best sequential algorithms have an asymptotic execution time of \(O(n \lg n) \). The best parallel

³This situation actually arises in existing parallel computers — see the description of census operations on the CM-2 on page 103.
algorithms have asymptotic execution times of $O(\lg n)$ using $O(n)$ processors — see Chapter 5, §1.3 (page 165);

3. Inversion of an $n \times n$ non-sparse matrix. The best sequential algorithms use Gaussian Elimination and have an execution time of $O(n^3)$. The asymptotically fastest known parallel algorithms have an execution time of $O((\lg^2 n) \log n)$ using $n^{2.376}$ processors.

The general pattern that emerges is:

- we have a sequential algorithm that executes in an amount of time that is bounded by a polynomial function of the input-size. The class of such problems is denoted P;
- we have parallel algorithms that execute in an amount of time that is bounded by a polynomial of the logarithm of the input-size, and use a number of processors bounded by a polynomial of the input size. The class of these problems is denoted NC;

As has been remarked before, $\mathsf{NC} \subseteq \mathsf{P}$ — any algorithm for a problem in NC can be sequentially simulated in an amount of time that is bounded by a polynomial function of the original input.

Our question of whether inherently sequential problems exist boils down to the question of whether there exist any problems in $\mathsf{P} \setminus \mathsf{NC}$ — or the question of whether $\mathsf{NC} = \mathsf{P}$.

As of this writing (1991) this question is still open. We will discuss some partial results in this direction. They give a natural relationship between parallel execution time and the amount of RAM required by sequential algorithms. From this we can deduce some rather weak results regarding sequential execution time.

It is first necessary to define the complexity of computations in a fairly rigorous sense. We will consider general problems equipped with

- An encoding scheme for the input-data. This is some procedure, chosen in advance, for representing the input-data as a string in some language associated with the problem. For instance, the general sorting problem might get its input-data in a string of the form $\{a_1, a_2, \ldots\}$, where the a_i are bit-strings representing the numbers to be sorted.
- A complexity parameter that is proportional to the size of the input-string. For instance, depending on how one defines the sorting problem, the complexity parameter might be equal to the number of items to be sorted, or the total number of symbols required to represent these data-items.

These two definitions of the sorting problem differ in significant ways. For instance if we assume that inputs are all distinct, then it requires $O(n \lg n)$ symbols to represent n numbers. This is due to the fact that $\lg n$ bits are needed to count from 0 to $n - 1$ so (at least) this many bits are needed to represent each number in a set of n distinct numbers. In this case, it makes a big difference whether one defines the complexity-parameter to be the number of data-items or the size (in bits) of the input. If (as is usual) we assume the all inputs to a sorting-algorithm can be represented by a bounded number of bits, then the number of input items is proportional to the actual size of the input.

Incidentally, in defining the complexity-parameter of a problem to be the size of the string containing the input-data, we make no assumptions about how this input
A string is processed — in particular, we do not assume that it is processed sequentially.

Having defined what we mean by the size of the input, we must give a rigorous definition of the various parameters associated with the execution of an algorithm for solving the problem like running time, memory, and number of processors. This is usually done with a Turing Machine.

A Turing Machine is a kind of generalization of a finite state automaton — it is a kind of fictitious computer for which it is easy to define the number of steps required to perform a computation. It consists of the following elements:

1. A Tape, shown in figure 2.4.
 This tape is infinite in length and bounded at one end. It is divided into cells that may have a symbol marked on them or be blank. Initially at most a finite number of cells are nonblank.

2. A Control Mechanism, which consists of:
 • \(Q \) = a finite set of states;
 • \(\Gamma \) = set of tape symbols, called the alphabet of the Turing machine;
 • \(B \) = blank symbol;
 • \(\Sigma \) = input symbols;
 • \(\delta \) = next move function: \(Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \);
 • \(q_0 \) = start state;
 • \(F \subseteq Q \) = final states.

In each step the machine reads a symbol from the tape, changes state, optionally writes a symbol, and moves the tape head left (L) or right (R) one position — all of these actions are encoded into the next move function. There are a number of auxiliary definitions we make at this point:

Definition 5.3. Suppose we have a Turing machine \(T \). Then:

1. An input string, \(S \), is accepted by \(T \) if \(T \) ends up in one of its stop-states after executing with the string as its original tape symbols.
2. The set, \(L(T) \), of input strings accepted by \(T \) is called the language recognized by \(T \). The reader might wonder what all of this has to do with performing computations.
3. If a string, \(S \), is recognized by \(T \), the symbols left on the tape after \(T \) has stopped will be called the result of \(T \) performing a computation on \(S \). Note that this is only well-defined if \(T \) recognizes \(S \).

It can be shown that any computation that can be done on a conventional sequential computer can also be done on a suitable Turing machine (although in much more time). It is also well-known that any computation that can be done in polynomial time on a conventional computer can be done in polynomial time on a
2. MODELS OF PARALLEL COMPUTATION

<table>
<thead>
<tr>
<th>States</th>
<th>Input Symbols</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Start state)</td>
<td>Move left, Go to state 4</td>
<td>Write 1, move left, go to state 2</td>
<td>Move right, go to state 1</td>
</tr>
<tr>
<td>2</td>
<td>Move right, go to state 3</td>
<td>Move left, go to state 1</td>
<td>Move left, go to state 1</td>
</tr>
<tr>
<td>3</td>
<td>Move right</td>
<td>Move right</td>
<td>Move 0, move right, go to state 1</td>
</tr>
<tr>
<td>4</td>
<td>Move right, go to state 5</td>
<td>Move left</td>
<td>Move left</td>
</tr>
<tr>
<td>5</td>
<td>Stop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1. Actions of a Turing machine for sorting a string of 0’s and 1’s

A **Turing machine**. Thus a Turing machine presents a simple model of computation that can be analyzed theoretically.

Example 5.4. Here is a Turing machine whose language consists of arbitrary finite strings on two symbols \{0, 1\} (in other words, it accepts all such strings). It has five states and its actions are described by table 2.1.

Careful examination of the action of this Turing Machine shows that it sorts its input string.

We will also need a variation on this form of Turing machine. An **offline** Turing machine is defined to be like the one above except that there are three tapes. The first one is a **read-only** tape that contains the input string. The second is like the tape in the definition above but it is required to be initially **blank**. The third is a **write-only** tape — it receives the output of the computation. Note that this form of Turing machine clearly distinguishes input from output, unlike the general Turing machines. It is possible to show that offline Turing machines are essentially equivalent to general Turing machines in the sense that any language recognized by a general Turing machine can also be recognized by a suitable offline Turing machine. Furthermore, the computations of the two types of Turing machines agree under this equivalence. Clearly, if we are only interested in what computations can be computed by a Turing machine, there is no need to define offline Turing machines — we only define them so we can rigorously define the **memory** used by an algorithm. See [73] for more information on Turing machines.

Definition 5.5. The **space** required to solve a problem on an offline Turing machine is defined to be the number of cells of the second tape that was used in the course of computation when the problem was solved.

Definition 5.6. 1. A problem with complexity parameter \(n\) will be said to be in the class \(T(n)\)-space if there exists an offline Turing machine that uses space \(T(n)\).

2. A problem will be said to be in **Plogspace**(\(k\)) if there exists an offline Turing machine that solves the problem using space that is \(O(\log^k n)\).
It is well-known that $\text{Plogspace}(1) \subset \text{P}$, i.e. any problem that can be solved on an offline Turing machine in space proportional to the logarithm of the complexity-parameter can be solved in polynomial time on a conventional Turing machine. This is not hard to see — if the total amount of RAM used by a sequential algorithm is $c \lg n$ then the total number of possible states (or sets of data stored in memory) is a power of n.

The converse question is still open — and probably very difficult. In fact it is not known whether every problem in P is in $\text{Plogspace}(k)$ for any value of k.

One question that might arise is: “How can problems with an input-size of n use an amount of RAM that is less than n?” The answer is that we can use an inefficient algorithm that doesn’t store much of the input data in RAM at any one time. For instance it turns out that sorting quantities by comparisons is in Plogspace — we simply use a kind of bubblesort that requires a great deal of time to execute but very little RAM. It turns out that essentially all of the typical algorithms discussed (for instance) in a course on algorithms are in Plogspace.

This will be our model of sequential computation. Our model for parallel computation will be somewhat different from those described in chapter 4. It is a MIMD form of parallel computation:

We will have a large (actually infinite) number of independent processors that can access common RAM and can execute the following instructions:

- `LOAD op`
- `STORE op`
- `ADD op`
- `SUB op`
- `JUMP label`
- `JZERO label`
- `READ reg#`
- `FORK label`
- `HALT`

Here an operand can be either: an address; an indirect address; or a literal. Initially input is placed in input registers that can be accessed via the `READ` instruction. Each processor has one register called its accumulator. Binary arithmetic instructions use the accumulator as the first operand and store the result in the accumulator. New processors are introduced into a computation via the `FORK` instruction which, when executed by processor i:

1. activates the next available processor — say this is processor j;
2. copies the accumulator of processor i to processor j;
3. and makes processor j take its first instruction from label.

When a processor executes a `HALT` instruction it stops running (and re-enters the pool of processors available for execution by `FORK` instructions). Execution of a program continues until processor 0 executes a `HALT` instruction, or two or more processors try to write to the same location in the same program step.

One processor can initiate two other processors in constant time via the `FORK` command. It can pass (via its accumulator) the address of a block of memory containing parameters for a subtask. It follows that a processor can initiate a tree of n other processors in $O(\lg n)$-time.
Processors have no local memory — they use the global memory available to all processors. It is not hard to “localize” some of this memory via a suitable allocation scheme. For instance, suppose a given processor has every k^{th} memory location allocated to it (as local memory). When this processor initiates a new processor, it can allocate local memory to the new processors from its own local memory. It can allocate every memory location (of its local memory) to the i^{th} processor it directly initiates, where p_i is the i^{th} prime number.

Note that this is a very generous model of parallel computation — it is much more powerful than the Connection Machine, for instance.

We are in a position to give a rigorous definition of the term NC:

Definition 5.7. A problem with complexity parameter n is in the class NC if there exists a parallel algorithm on the computer described above, that executes in time $O(\lg^k n)$ and uses $O(n^{k'})$ processors, where k and k' are two integers ≥ 0.

Our first result is:

Theorem 5.8. For $T(n) \geq \lg n$:

$$\bigcup_{k=1}^{\infty} T(n)^k\text{-time-P-RAM} = \bigcup_{k=1}^{\infty} T(n)^k\text{-space}$$

In particular,

$$\bigcup_{k=1}^{\infty} \lg^k n\text{-time-P-RAM} = \bigcup_{k=1}^{\infty} \lg^k n\text{-space}$$

The proof consists in the following two lemmas:

Lemma 5.9. Let L be a language accepted by a deterministic $T(n)$-space bounded Turing machine M, for $T(n) \geq \lg n$. Then L is accepted by a deterministic $cT(n)$-time bounded P-RAM P, for some constant c.

In the theory of Turing machines, acceptance of a language can be regarded as performance of a computation.

Proof. We will simulate the behavior of M by P. Initially our simulation will assume that the value of $T(n)$ is available at the beginning of the computation (possibly an unrealistic assumption) and then we will show how to conduct the simulation in such a way that this assumption is removed.

Given $T(n)$, P constructs a directed graph representing all possible configurations of M during the computation. We will regard a configuration of M as a state of M together with the data required to compute the next state. This consists of:

1. the data in the memory tape;
2. a pointer to a position of the input tape;

Statement 1 above results in $2^{T(n)}$ possible configurations (since the memory tape has $T(n)$ slots for data) and since the parameter defining the original problem’s size is n we assume $O(n)$ possible positions on the input tape. The total number of possible configurations is thus $wn2^{T(n)}$, where w is some constant. This can be regarded as $2^{T(n)+\lg n+\lg w} < 2^{dT(n)}$, for some constant d depending on M. Leaving each node of the graph will be a single edge to the node of its successor configuration. Accepting configuration-nodes of M are their own successors. Thus there
exists a path from the initial configuration node to an accepting node if and only if M accepts its input within $T(n)$-space.

To build the graph, P first initiates $2^{dT(n)}$ processors in $O(T(n))$-steps, each holding a different integer, representing a different configuration of M. Each processor then, in $O(T(n))$-time:

1. unpacks its configuration integer (we assume this integer contains an encoded representation of a state of the Turing machine);
2. computes the successor configuration (simulating the behavior of the Turing machine when it is in this state);
3. packs this successor configuration into integer form.

The graph is stored in global memory and the parallel computer then determines whether there exists a path connecting the initial node to some accepting node. This is done as follows: Each processor computes the successor of its successor node and stores this as its immediate successor. In k steps each processor will point to the 2^k-th successor node and in $O(T(n))$-steps the question of whether the language will be accepted will be decided because the successor nodes are all a distance of at most $2^{dT(n)}$ from the start node.

As pointed out above this algorithm has the unfortunate drawback that it requires knowledge of $T(n)$ before it can be carried out. This can be corrected as follows: At the beginning of the simulation processor 0 starts other processors out that assume that the value of $T(n)$ is 1, 2, ..., respectively. These processors carry out the simulation above, using these assumptions and if any of them accepts the language, then processor 0 accepts also. We assume that memory is allocated so that the areas of memory used by the different simulations is disjoint — this can be accomplished by adding $c2^{dT(n)}$ to the addresses of nodes for the simulation of a given value of $T(n)$.

Lemma 5.10. Let L be accepted by a deterministic $T(n)$-time bounded P-RAM. Then L is accepted by a $T(n)^2$-space bounded Turing machine.

Proof. We will first construct a nondeterministic $T(n)^2$-space bounded Turing Machine accepting L. We will then show how to make it deterministic. Recall that a *nondeterministic Turing machine* is one that may take many different actions in a given step — imagine that the machine “splits” into many different machines, each taking a different action and attempting to complete the computation using that alternate. The language is ultimately accepted if any one of these split machines accepts it.

In order to determine whether the P-RAM accepts its input, the Turing Machine needs to:

1. know the contents of processor 0’s accumulator when it halts; and
2. to verify that no two writes occur simultaneously into the same global memory location.

The simulation is based on a recursive procedure ACC which checks the contents of a processor’s accumulator at a particular time. By applying the procedure to processor 0 we can determine if the P-RAM accepts the language. ACC will check that at time t, processor j executed the ith instruction of its program leaving c in its accumulator. In order to check this, ACC needs to know
1. the instruction executed by processor \(j \) at time \(t - 1 \) and the ensuing contents of its accumulator, and
2. the contents of the memory locations referenced by instruction \(i \).

\textbf{ACC} can nondeterministically guess 1 and recursively verify it. To determine 2, for each memory location, \(m \), referenced \textbf{ACC} guesses that \(m \) was last written by some processor \(k \) at time \(t' < t \). ACC can recursively verify that processor \(k \) did a \texttt{STORE} of the proper contents into \(m \) at time \(t' \). ACC must also check that no other processor writes into \(m \) at any time between \(t' \) and \(t \). It can do this by guessing the instructions executed by each processor at each such time, recursively verifying them, and verifying that none of the instructions changes \(m \). Checking that two writes do not occur into the same memory location at the same time can be done in a similar fashion. For each time step and each pair of processors, ACC nondeterministically guesses the instructions executed, recursively verifies them, and checks that the two instructions were not write-operations into the same memory location. The correctness of the simulation follows from the determinism of the \texttt{P-RAM}. In general, each instruction executed by the \texttt{P-RAM} will be guessed and verified many times by \textbf{ACC}. Since the \texttt{P-RAM} is deterministic, however, there can be only one possible instruction that can be executed by a processor in a program step — each verified guess must be the same. Now we analyze the space requirements:

Note that there can be at most \(2^{T(n)} \) processors running on the \texttt{P-RAM} after \(T(n) \) program steps so writing down a processor number requires \(T(n) \) space. Since addition and subtraction are the only arithmetic operators, numbers can increase by at most one bit each step. Thus, writing down the contents of the accumulator takes at most \(T(n) + \log n = O(T(n)) \) space. Writing down a time step takes \(\log T(n) \) space and the program counter requires only constant space. Hence the arguments to a recursive call require \(O(T(n)) \) space. Cycling through time steps and processor numbers to verify that a memory location was not overwritten also only takes \(T(n) \) space, so that the total space requirement at each level of the recursion is \(O(T(n)) \). Since there can be at most \(T(n) \) levels of recursion (one for each time step of the program on the parallel machine) the total space requirement is \(O(T(n)^2) \). Note that this simulation can be performed by a deterministic Turing Machine — in each step, simply loop through all of the possibilities when performing the recursive calls to \textbf{ACC} — i.e., all instructions in the instruction set; all prior times, etc.

This requires that we modify the \textbf{ACC} procedure slightly so that it returns information on whether a given guess was correct. This could be accomplished by having it returns either the value of the accumulator, if a given processor really did execute a given instruction at a given time or return \texttt{NULL}, indicating that the guess was wrong. This increases the execution time of the algorithm tremendously but has no effect on the space requirement. \(\square \)

\textbf{Exercises.}
5.2. Show that the example of a Turing machine given in 5.4 on page 32 is in \textit{Plogspace}. Do this by explicitly transforming it into an offline Turing machine.

5.2. \textbf{P-Completeness and Inherently Sequential Problems.} The previous section provided some important definitions and showed that problems were solvable in polylogarithmic time on a parallel computer if and only if they were solvable in polylogarithmic space on an offline Turing machine. In the present section we will apply these results to study the question of whether there exist inherently sequential problems. Although this question is still (as of 1991) open, we can study it in a manner reminiscent of the theory of \textit{NP}-complete problems. As is done there, we restrict our attention to a particular class of problems known as \textit{decision problems}. These are computations that produce a boolean 0 or 1 as their result. It will turn out that there are reasonable candidates for inherently sequential problems even among this restricted subset.

\textbf{Definition 5.11.} A \textit{decision problem} is a pair \{\textit{T}, \textit{L}\} where:

1. \textit{T} recognizes all strings made up of the basic alphabet over which it is defined.
2. \textit{L} is the set of strings over this alphabet for which the computation that \textit{T} performs results in a 1.

For instance, a \textit{decision-problem} version of the problem of sorting \(n\) numbers would be the problem of whether the \(k\)th element of the result of sorting the \(n\) numbers had some given value.

We will be able to give likely candidates for inherently sequential problems by showing that there exist problems in \(\textit{P}\) with the property that, if there exists an \textit{NC} algorithm for solving them, then \(\textit{P} = \textit{NC}\). We need the very important concept of \textit{reducibility} of decision-problems:

\textbf{Definition 5.12.} Let \(P_1 = \{T_1, L_1\}\) and \(P_2 = \{T_2, L_2\}\) be two decision-problems and let \(\Sigma_1\) and \(\Sigma_2\) be the respective alphabets for the Turing machines that resolve these decision-problems. Then \(P_1\) will be said to be \textit{reducible} to \(P_2\), denoted \(P_1 \propto P_2\), if there exists a function \(f: \Sigma_1^* \rightarrow \Sigma_2^*\) such that:

- a string \(s \in L_1\) if and only if \(f(s) \in L_2\);
- the function \(f\) is in \textit{NC} — in other words, there exists a parallel algorithm for computing \(f\) that requires \(O(\lg^k n)\) time-units and \(O(n^{k'})\) processors, where \(k\) and \(k'\) are some integers, and \(n\) is the complexity parameter for \(P_1\).

\(P_1\) will be said to be \textit{logspace reducible} to \(P_2\), denoted \(P_1 \propto_{\text{logspace}} P_2\), if the conditions above are satisfied, and in addition, the algorithm computing the function \(f\) is in \textit{logspace}. In other words, there must exist an offline Turing machine using logspace, that computes \(f\). The results of the previous section show that strong reducibility is equivalent to reducibility with the exponent \(k\) equal to 1.
Note that $P_1 \propto P_2$ implies that an NC algorithm for P_2 gives rise to a similar algorithm for P_1: if we want to decide whether a string $s \in \Sigma^*$ results in a 1 when executed on T_1, we just apply the function f (which can be done via an NC algorithm) and execute T_2 on the result. If there exists an NC algorithm for P_2, $P_1 \propto P_2$ implies that, in some sense, the decision problem P_1 is solvable in polylogarithmic time with a polynomial number of processors:

1. Convert an input-string of P_1 into a corresponding input-string of P_2 via the transformation-function f, in $P_1 \propto P_2$. The computation of this function can be done via an NC algorithm.
2. Execute the NC algorithm for P_2.

As in the theory of NP completeness, we distinguish certain problems in P that are the “hardest”:

Definition 5.13. A problem Z in P will be called P-complete if it has the property that:

For every problem $A \in P$, $A \propto Z$.

The problem Z will be called logspace-complete for P or strongly P-complete if:

For every problem $A \in P$, $A \propto \logspace Z$.

The first problem proved to be P-complete was the problem of “directed forest accessibility” — see [32].

We will conclude this section with an example of a problem that is known to be strongly P-complete — i.e., logspace complete for P, as defined above. It is fairly simple to state:

Example 5.14. Circuit Value Problem.

- **Input:** A list $L = \{L_1, \ldots, L_n\}$ of n-terms (where n is some number > 0, where each term is either:
 1. A 0 or a 1, or;
 2. A boolean expression involving strictly lower-numbered terms — for instance, we might have $L_5 = (L_2 \lor L_4) \land (L_1 \lor L_3)$.

- **Output:** The boolean value of L_n. Note that this is a decision problem.

Note that the requirement that boolean expressions involve strictly lower-numbered terms means that the first term must be a 0 or a 1.

This problem is trivial to solve in n steps sequentially: just scan the list from left to right and evaluate each term as you encounter it. It is interesting that there is no known NC algorithm for solving this problem. Ladner proved that this problem is logspace complete for P, or strongly P-complete — see [97].

Lemma 5.15. The circuit value problem, as defined above, is logspace-complete for P.

Proof. Let CVP denote the Circuit Value Problem. We must show, that if Z is any problem in P, then $Z \propto \logspace \text{CVP}$. We will assume that Z is computed by a Turing machine T that always halts in a number of steps that is bounded by a polynomial of the complexity parameter of the input. We will construct a (fairly large) circuit whose final value is always the same as that computed by T. We will also show that the construction can be done in logspace. We will assume:

- The number of characters in the input-string to T is n;
The execution-time of T is $E = O(n^k)$, where k is some integer ≥ 1.

During the course of the execution of T, the number of states that it ever passes through is $O(n^k)$, since it stops after this number of steps. The binary representation of a state-number of T clearly requires $O(\lg n)$ bits.

The number of tape-symbols that are nonblank at any step of the algorithm is $O(n^k)$. This is because the tape started out with n nonblank (input) symbols, and at most $O(n^k)$ write-operations were executed while T was active.

The transitions of T are encoded as a large set of boolean formulas, computing:
1. the bits of the next state-number from the bits of the current state-number, the bits of the current input-symbol.
2. whether the tape is moved to the left or the right.
3. whether anything is written to the tape in this step (and what is written).

Although it might seem that this assumption is an attempt to make life easy for ourselves, it is nevertheless a reasonable one. The transition function may well be encoded as such a sequence of boolean formulas. If it is simply represented as a table like that on page 32, it is fairly trivial to convert this table into a series of boolean formulas representing it.

We will build a large circuit that is the concatenation of sublists $\{L_1, \ldots, L_E\}$, one for each program-step of the execution of T. The list L_1 consists of bits representing the input-data of T, and a sequence of bits representing its start-state. In general L_i will consist of a concatenation of two sublists S_i and Q_i.

- the sublist S_i consists of a sequence of boolean formulas computing the bits of the new state-number of T in program-step i. These formulas use the bits of S_{i-1} and Q_{i-1} as inputs.
- Q_i lists the bits of the nonblank tape symbols in program-step i (of T). For tape-positions that are not written to in step i, the corresponding entries in Q_i simply copy data from corresponding positions of Q_{i-1}. In other words, these formulas are trivial formulas that are just equal to certain previous terms in the giant list. The entries of Q_i that represent tape-symbols that are written to in program-step i have boolean formulas that compute this data from:
 1. The bits of the current state-number, computed by the boolean formulas in S_i.
 2. Bits of Q_{i-1}, representing the tape in the previous program-step.

Now we consider how this conversion of the input data and the transition-function of T into the L_i can be accomplished:

1. We must be able to count the number of program-steps of T so that we will know when to stop generating the L_i. Maintaining such a counter requires $O(\lg n)$ memory-locations in the offline Turing machine that converts T into the circuit.
2. We must be able to copy formulas from rows of the table representing the transition-function of T into entries of the circuit we are generating. This requires looping on the number of bits in these boolean formulas. Again, we will need $O(\lg n)$ memory-locations.
3. We must keep track of the current location of the read-write head of T. This tells us how to build the formulas in Q_i that represent tape-symbols written to in program-step i. Since the total number of such tape-positions is $O(n^k)$, we will need $O(\log n)$ bits to represent this number. We increment this number every time the transition-function calls for movement to the right (for instance) and decrement it every time we are to move to the left.

The offline Turing machine will contain this memory, and its input program. The total memory used will be $O(\log n)$, so the transformation from T to the Circuit Value Problem will be logspace.

Many problems are known to be P-complete. We will give a list of a few of the more interesting ones.

- **The Monotone Circuit Problem** This is a circuit whose only operations are \lor and \land. Goldschlager gave a logspace reduction of the general circuit-value problem to this — see [59]. The Planar Circuit Value Problem is also P-complete. A planar circuit is a circuit that can be drawn on a plane without any “wires” crossing. It is interesting that the Monotone, Planar Circuit Value problem is in NC — see [57].

- **Linear Inequalities** The input to this problem is an $n \times d$ integer-valued matrix A, and an integer-valued $n \times 1$ vector c. The problem is to answer the question of whether there exists a rational-valued vector x such that

$$Ax \leq c$$

In 1982, Cook found the following reduction of the Circuit Value Problem to the Linear Inequality Problem:

1. If input x_i (of the Circuit Value Problem) is $\{\text{True} \}$, it is represented by the equation $\{x_i = 1\}$.

2. A NOT gate with input u and output w, computing $w = \neg u$, is represented by the inequalities $\{w = 1 - u\} \cup \{0 \leq w \leq 1\}$.

3. An OR gate with inputs u and v, and output w is represented by the inequalities

$$\begin{cases} 0 \leq w \leq 1 \\ u \leq w \\ v \leq w \\ w \leq u + v \end{cases}$$

4. An AND gate with gate with inputs u and v, and output w is represented by the inequalities

$$\begin{cases} 0 \leq w \leq 1 \\ w \leq u \\ w \leq v \\ u + v - 1 \leq w \end{cases}$$

This is interesting because this decision problem is a crucial step in performing Linear Programming. It follows that Linear Programming is P-complete. It is interesting that Xiaotie Deng has found an NC algorithm for planar Linear Programming. This is linear programming with only two variables (but, perhaps, many inequalities) — see [46] for the algorithm.
• **Gaussian elimination** This is the standard sequential algorithm for solving a system of simultaneous linear equations or inverting a matrix. Among other things, it involves clearing out rows of a matrix at certain *pivot points*, which are computed as the algorithm executes. The paper [165], by Stephen Vavasis proves that the problem of deciding whether a given element will be a pivot-element in the Gaussian elimination algorithm is P-complete. This implies that fast parallel algorithms (i.e., NC algorithms) cannot be based upon Gaussian elimination. This conclusion is interesting because many people have worked on the problem of parallelizing Gaussian elimination by trying to exploit certain parallelisms in the problem. This paper implies that none of this work will ever result in an NC algorithm for solving linear equations. See § 1 in chapter 5 for an example of an NC algorithm for matrix inversion. This algorithm is not based upon Gaussian elimination.

• **Maximum flows** This is an important problem in the theory of networks. In order to understand it, imagine a network of pipes with the property that each pipe in the network has a certain *carrying capacity* — a maximum rate at which fluid can flow through it. Suppose that one point of the network is a source of fluid and some other point is where fluid leaves the network. The maximum flow problem asks the question “What is the maximum rate fluid can flow from the source to the exit?”. This must be computed from characteristics of the network, including the carrying capacities of the pipes and how they are arranged. The paper [60], by L. Goldschlager, L. Shaw and J. Staples proves that this problem is Plogspace-complete.

• **Inference problem for multivalued dependencies** This is a problem from the theory of databases. Essentially, a large part of the problem of designing a database consists in identifying dependencies in the data: aspects of the data that determine other aspects. A multivalued dependency represents a situation where one aspect of the data influences but doesn’t completely determine another. These multivalued dependencies imply the existence of other multivalued dependencies among aspects of data. The problem of determining these other multivalued dependencies from the given ones turns out to be P-complete — see [45].

5.3. **Further reading.** Greenlaw, Hoover, and Ruzzo have compiled a large list of P-complete problems — see [61]. This list will be periodically updated to incorporate newly discovered P-complete problems.

In [171] Wilson shows that the class NC has a “fine-structure” — it can be decomposed into subclasses that have natural descriptions.

In [31] Cook gives a detailed description of parallel complexity classes and how they relate to each other. Also see [30].

General Principles of Parallel Algorithm Design

In this section we discuss some general principles of algorithm-design. Later chapters in this book will explore these principles in more detail. We have already seen some of these concepts in the Introduction.

4There is more to it than this, however. See a good book on database design for more information
5.4. Brent’s Theorem. Brent’s Theorem makes precise some of the heuristic arguments in the introduction relating computation networks with time required to compute something in parallel.

We will need a rigorous definition of a combinational network, or computational network. As with comparator networks defined in §2 we consider a kind of “circuit” whose “wires” can transmit numerical data and nodes that can modify the data in prescribed ways.\(^5\)

Definition 5.16. A computational network is a directed acyclic\(^6\) We will assume that the edges of this graph “transmit” data like sorting networks. The vertices of a computational network are subdivided into three sets:

- **Input** vertices These vertices have no incoming edges.
- **Output** vertices These vertices have no outgoing edges.
- **Interior** vertices These vertices have incoming edges and one or more outgoing edges. All of the outgoing edges of an interior vertex pass the same data.

Each interior vertex is labeled with an elementary operation (to be discussed below). The number of incoming edges to an interior vertex is called its fan-in. The number of outgoing edges is called the fan-out. The maxima of these two quantities over the entire graph is called, respectively, the fan-in and the fan-out of the graph.

The length of the longest path from any input vertex to any output vertex is called the depth of the computational network. The computation performed by a computation network, on a given set of inputs is defined to be the data that appears on the output vertices as a result of the following procedure:

1. Apply the input data to the input vertices.
2. Transmit data along directed edges. Whenever an interior vertex is encountered, wait until data arrives along all of its incoming edges, and then perform the indicated elementary computation. Transmit the result of the computation along all of the outgoing edges.
3. The procedure terminates when there is no data at interior vertices.

Each edge of the computational network is assumed to be able to transmit a number of a certain size that is fixed for the rest of this discussion (a more detailed consideration of these networks would regard the carrying capacity of each wire to be a single bit — in this case the magnitudes of the numbers in question would enter into complexity-estimates). The elementary operations are operations that can be carried out on the numbers transmitted by the edges of the network within a fixed, bounded, amount of time on a RAM computer. As before, a more detailed discussion would define an elementary operation to be an elementary boolean operation like AND, OR, or NOT. In our (higher level) discussion, elementary operations include +, −, min, max, ∗, /, and many more.

Now we are in a position to state Brent’s Theorem:

\(^5\)These are, of course, precisely the properties of the electronic circuits used in a computer. We do not want to become involved with issues like the representation of arithmetic operations in terms of boolean logic elements.

\(^6\)Acyclic just means that the graph has no directed loops.
THEOREM 5.17. Let N be a computational network with n interior nodes and depth d, and bounded fan-in. Then the computations performed by N can be carried out by a CREW-PRAM computer with p processors in time $O \left(\frac{n}{p} + d \right)$.

The total time depends upon the fan-in of N — we have absorbed this into the constant of proportionality.

PROOF. We simulate the computations of N in a fairly straightforward way. We assume that we have a data-structure in the memory of the PRAM for encoding a vertex of N, and that it has a field with a pointer to the vertex that receives the output of its computation if it is an interior vertex. This field is nil if it is an output vertex. We define the depth of a vertex, v, in N to be the maximum length of any path from an input vertex to v — clearly this is the greatest distance any amount of input-data has to travel to reach v. It is also clear that the depth of N is the maximum of the depths of any of its vertices. We perform the simulation inductively — we simulate all of the computations that take place at vertices of depth $\leq k - 1$ before simulating computations at depth k. Suppose that there are n_i interior vertices of N whose depth is precisely i. Then $\sum_{i=1}^{d} n_i = n$. After simulating the computations on vertices of depth $k - 1$, we will be in a position to simulate the computations on nodes of depth k, since the inputs to these nodes will now be available.

CLAIM 5.18. When performing the computations on nodes of depth k, the order of the computations is irrelevant.

This is due to the definition of depth — it implies that the output of any vertex of depth k is input to a vertex of strictly higher depth (since depth is the length of the longest path from an input vertex to the vertex in question).

The simulation of computations at depth k proceeds as follows:
1. Processors read the data from the output areas of the data-structures for vertices at depth $k - 1$.
2. Processors perform the required computations.

Since there are n_k vertices of depth k, and the computations can be performed in any order, the execution-time of this phase is

$$\left\lfloor \frac{n_k}{p} \right\rfloor \leq \frac{n_k}{p} + 1$$

The total execution-time is thus

$$\sum_{i=1}^{d} \left\lfloor \frac{n_k}{p} \right\rfloor \leq \sum_{i=1}^{d} \frac{n_k}{p} + 1 = \frac{n}{p} + d$$

We normally apply this to modifying parallel algorithms to use fewer processors —see § 5.5.2 below (page 45). If a computational network has bounded fan-out as well as bounded fan-in we get:

COROLLARY 5.19. Let N be a computational network with n interior nodes and depth d, and bounded fan-in and fan-out. Then the computations performed by N can be carried out by a EREW-PRAM computer with p processors in time $O \left(\frac{n}{p} + d \right)$.

Brent’s theorem has interesting implications for the question of work efficiency of an algorithm.

Definition 5.20. The amount of work performed by a parallel algorithm is defined to be the product of the execution time by the number of processors.

This measures the number of distinct computations a parallel algorithm performs.

We can think of a computation network with n vertices as requiring n units of work to perform its associated computation — since there are n distinct computations to be performed. The work required by a simulation of a computation network is (by Brent’s Theorem) $O(n + dp)$. This is proportional to the number of vertices in the original computation network if p is proportional to n/d.

Definition 5.21. Let A be a parallel algorithm that performs a computation that can be represented by a computation network. Then A will be said to be a work-efficient parallel algorithm if it executes in time $O(d)$ using p processors, where $p = n/d$, and n is the number of vertices in a computation network for performing the computations of algorithm A with the smallest possible number of vertices.

Work-efficient parallel algorithms are optimal, in some sense.

Exercises.

5.3. Find a computation network for evaluating the expression $(x^2 + 2)(x^3 - 3) - 2x^3$.

5.4. Show that sorting networks can be expressed in terms of computation networks. This implies that they are a special case of computation networks.

5.5. SIMD Algorithms.

5.5.1. Doubling Algorithms. The program for adding up n numbers in $O(\lg n)$ time is an example of a general class of parallel algorithms known by several different names:

- Parallel-prefix Operations.
- Doubling Algorithms.

In each case a single operation is applied to a large amount of data in such a way that the amount of relevant data is halved in each step. The term “Doubling Algorithms” is somewhat more general than “Parallel Prefix Operations”. The latter term is most often used to refer to generalizations of our algorithm for adding.
5. RELATIONS BETWEEN PRAM MODELS

5.1 Numbers — in which the operation of addition is replaced by an arbitrary associative operation. See §1 in chapter 6 for several examples of how this can be done.

Another variation on this theme is a class of techniques used in Graph Algorithms called “Pointer Jumping”. This involves assigning a processor to each node of a directed graph and:

1. Having each processor determine the successor of its successor;
2. Causing the processors to effectively regard the nodes computed in step 1 as their new successors;
3. Go to step 1.

In this way, the end of a directed path of length \(n \) can be found in \(O(\lg n) \) steps. This is a special case of parallel prefix operations, since we can regard the edges of the graph as the objects under study, and regard the operation of combining two edges into “one long edge” (this is basically what the pointer jumping operation amounts to) as an associative operation. See § 1.4 for examples of algorithms of this type (and definitions of the terminology used in graph theory).

5.5.2. The Brent Scheduling Principle. One other general principle in the design of parallel algorithms is the Brent Scheduling Principle. It is a very simple and ingenious idea first described by R. Brent in [21], that often makes it possible to reduce the number of processors used in parallel algorithms, without increasing the asymptotic execution time. In general, the execution time increases somewhat when the number of processors is reduced, but not by an amount that increases the asymptotic time. In other words, if an algorithm has an execution time of \(O(\lg^k n) \), then the execution-time might increase by a constant factor. In order to state this result we must recall the concept of computation network, defined in 5.16 on page 42.

COROLLARY 5.22. Suppose algorithm A has the property that its computations can be expressed in terms of a computation network with \(x \) vertices and depth \(t \) that has bounded fan-in. Then algorithm A can be executed on a CREW-PRAM computer with \(p \) processors in time \(O(\frac{2}{p} + t) \).

The proof is a direct application of Brent’s Theorem (5.17 on page 42). See page 270 for some applications of this principle.

This result has some interesting consequences regarding the relationship between data-representation and execution-time of an algorithm. Consider the algorithm for adding up numbers presented on page 7. Since the data is given in an array, we can put it into any computation network we want — for instance, the one in figure 1.8 on page 7. Consequently, the Brent Scheduling Principle states that the algorithm on page 7 can be executed with \(\lceil n/\lg(n) \rceil \) processors with no asymptotic degradation in execution time (i.e., the execution time is still \(O(\lg n) \)).

If the input-data was presented to us as elements of a linked list, however, it is not clear how we could apply the Brent Scheduling Principle to this problem. The linked list can be regarded as a computation network of depth \(n \), so Brent’s Theorem would imply an execution time of \(O(n) \). We can actually get an execution time of \(O(\lg n) \) by using the technique of pointer jumping in § 5.5.1 above, but this actually requires \(n \) processors. The parallel algorithms for list-ranking in this case are more complicated than straightforward pointer-jumping — see [7]. Also see chapter 7 for a simple probabilistic algorithm for this problem.
5.5.3. Pipelining. This is another technique used in parallel algorithm design. Pipelining can be used in situations where we want to perform several operations in sequence \(\{P_1, \ldots, P_n\} \), where these operations have the property that some steps of \(P_{i+1} \) can be carried out before operation \(P_i \) is finished. In a parallel algorithm, it is often possible to overlap these steps and decrease total execution-time. Although this technique is most often used in MIMD algorithms, many SIMD algorithms are also able to take advantage of it. Several algorithms in this book illustrate this principle:

- The Shiloach-Vishkin algorithm for connected components of a graph (see page 301). Pipelining in this case is partly responsible for reducing the execution-time of this algorithm from \(O(\lg^2 n) \) to \(O(\lg n) \).
- The Cole sorting algorithm (see page 349). This is, perhaps, the most striking example of pipelining in this book. This sorting algorithm is based upon ideas like those in 3.7 on page 23, but ingeniously “choreographs” the steps in such a way that the execution-time is reduced from \(O(\lg^2 n) \) to \(O(\lg n) \).

5.5.4. Divide and Conquer. This is the technique of splitting a problem into small independent components and solving them in parallel. There are many examples of this technique in this text:

- The FFT algorithm (at least if we consider its recursive definition) in § 2.3 of chapter 5 (page 186);
- The parallel prefix, or doubling algorithms of § 1 in chapter 6 (page 267);
- All of the algorithms for connected components and minimal spanning trees in § 1.4 of chapter 6 (page 281);
- The Ajtai, Komlós, Szemerédi sorting algorithm in § 3.7 of chapter 6 (page 365);

The reader will doubtless be able to find many other examples in this book.

5.6. MIMD Algorithms.

5.6.1. Generalities. This section is longer than the corresponding section on SIMD algorithm design because many of the important issues in SIMD algorithm design are dealt with throughout this book, and frequently depend upon the problem being studied. The issues discussed in this section are fairly constant throughout all MIMD algorithms. As is shown in § 5.7 on page 53, design of a MIMD algorithm can sometimes entail

- the design of a good SIMD algorithm,
- conversion to a MIMD algorithm

The second step requires the computations to be synchronized, and this involves using the material in this section.

The issues that arise in the design of MIMD algorithm are essentially identical to those that occur in concurrent programming. The problems that occur and their solutions are basically the same in both cases. The main difference between MIMD algorithm design and concurrent algorithm design involves questions of when and why one creates multiple processes:

1. When designing concurrent algorithms to run on a single-processor computer, we usually create processes in order to handle asynchronous events in situations in which we expect little real concurrency to occur. The generic
example of this is waiting for I/O operations to complete. Here we expect one process to be dormant most of the time, but are unable to accurately predict when it will be dormant. We usually avoid creating processes to handle computations or other operations that will be truly concurrent, because there is no real concurrency on a single-processor machine — it is only simulated, and this simulation has an associated cost.

2. When designing MIMD algorithms to run on a parallel computer, we try to maximize the amount of concurrency. We look for operations that can be carried out simultaneously, and try to create multiple processes to handle them. Some of the considerations in writing concurrent programs still apply here. Generally, it is not advisable to create many more processes than there are processors to execute them. The overhead involved in creating processes may be fairly large. This is the problem of grain-size. This is in contrast to SIMD algorithms, in which there is little overhead in creating parallel threads of data and computation.

We will discuss a few of the very basic issues involved in concurrent and MIMD algorithm design. The most basic issue is that we should analyze the computations to be performed and locate parallelism. This can be done with a dependency graph. Page 7 gives two examples of syntax trees. These are like dependency graphs for arithmetic operations. The cost of creating processes on most MIMD computers almost always makes it necessary to work on a much coarser scale.

We generally take a high-level description of the computations to be performed, and make a directed graph whose nodes represent discrete blocks of independent operations. The edges represent situations in which one block of operations depends upon the outcome of performing other blocks. After this has been done we can design the MIMD algorithm by:

1. Creating one process for each node of the graph, and make the processes wait for the completion of other processes upon which they are dependent.
2. Creating one process for each directed path through the dependency graph, from its starting point to its end.

5.6.2. Race-conditions. However we do this, we encounter a number of important issues at this point. If two processes try to access the same shared data, they may interfere with each other:

Suppose two processes update a shared linked list simultaneously — the head of the list is pointed to by a pointer-variable named head, and each entry has a next pointer to the next entry.

Process A wants to add a record to the beginning of the list by:

A.1 making the new record’s next pointer equal to the head pointer (so it points to the same target);
A.2 making the head pointer point to the new record;

Process B wants to delete the first record by:

B.1 Making the head pointer equal to the next pointer of its target;
B.2 Deleting the record that was originally the target of the head pointer;

Through unlucky timing, these operations could be carried out in the sequence A.1, B.1, A.2, B.2. The result would be that the head would point to the new record added by process A, but the next pointer of that record would point to the record
deleted by process B. The rest of the list would be *completely inaccessible*. This is an example of a *race-condition* — the two processes are in a “race” with each other and the outcome of the computations depend crucially on which process reaches certain points in the code first.

Here is a program in C for the Sequent Symmetry computer that illustrates race-conditions:

```c
#include <stdio.h>
/
* The next two include files refer to system libraries for
* sharing memory and creating processes. */
#include <parallel/microtask.h>
#include <parallel/parallel.h>
shared int data;
void dispatch ();
void child1 ();
void child2 ();
void main ()
{
    m_set_procs (2); /* Causes future calls to 'm.fork' to
    * spawn two processes */
    m_fork (dispatch); /* This call to 'm.fork' spawn two processes
    * each of which, is a contains a copy of the
    * routine 'dispatch' */
    exit (0);
}
void dispatch () /* This routine is executed in two
    * concurrent copies. */
{
    int i,
    j;
    int p = m_get_myid (); /* Each of these copies determines
    * its identity (i.e., whether it is
    * process number 0 or 1) */
    if (p == 0)
        child1 ();
    else
        child2 ();
}
void child1 () /* 'child1' contains the actual
    * code to be executed by process 0. */
{
    int i,
    j;
    for (i = 0; i < 10; i++)
    {
        data = 0;
        for (j = 0; j < 500; j++)
    }

```
printf ("Child 1, data=%d\n", data);
}
}

void child2 () /* 'child2' contains the actual
* code to be executed by process 1. */
{
 int i,
 j;
 for (i = 0; i < 10; i++)
 {
 data++;
 for (j = 0; j < 500; j++);
 printf ("Child 2, data=%d\n", data);
 }
}

Here two processes are generated, called child1 and child2. Since mfork normally generates many processes at once, we have to make it spawn both child-processes in a single statement. This is done by making a routine named dispatch be the child-process. Each copy of this routine calls myid to determine its identity and call child1 or child2 depending on the result. Note that child1 zeroes a shared data item named data, and child2 increments it. They both then wait a short time and print the value out. Since data is shared though, it is possible that while one process is waiting to print out the data, the other process can sneak in and change it’s value. This actually happens, as you can see if you run this program:

cc name.c -lpps a.out

The results are unpredictable (this is usually true with race-conditions) — you will probably never get the same set of results twice. Most of the time, however, child1 will occasionally print out values other than 0, and child2 will sometimes print 0.

This type of problem is solved in several ways:

a. One involves locking operations that prevent more than one process from accessing shared data (access to data that is exclusive to a single process is called atomic). Essentially, the first process that calls the m_lock system-function continues to execute and any other process that calls this function is suspended until the first process calls m_unlock. If two processes call m_lock simultaneously, the system makes a decision as to which gets priority.

Here is how the program above looks when semaphores are used to prevent race-condition:

```c
#include <stdio.h>
#include <parallel/microtask.h>
#include <parallel/parallel.h>

shared int data;
void child ();
void child1 ();
void child2 ();
void main ()
{
    m_set_procs (2);
```


```c
m_fork (child);
exit (0);
}
void child ()
{
int i,
j;
int p = m_get_myid ();
if (p == 0)
child1 ();
else
child2 ();
}
void child1 ()
{
int i,
j;
for (i = 0; i < 10; i++)
{
  m_lock ();
data = 0;
  for (j = 0; j < 500; j++);
  printf ("Child 1, data=%d\n", data);
  m_unlock ();
}
}
void child2 ()
{
int i,
j;
for (i = 0; i < 10; i++)
{
  m_lock ();
data++;
  for (j = 0; j < 500; j++);
  printf ("Child 2, data=%d\n", data);
  m_unlock ();
}
}
```

The functions `m_lock` and `m_unlock()` are system calls available on the Sequent line of parallel computers.

The standard term (i.e. the term you will see most often in the literature) for a locking operation (in the theory of concurrent programming) is a *semaphore*. The lock and unlock-operations are called *semaphore down* and *semaphore up* operations.

One characteristic of processes that are under the control of a lock (or semaphore) is that the amount of speedup that is possible due to parallel
processing is limited. This is due to the fact that the semaphore forces certain sections of code to be executed sequentially. In fact:

Lemma 5.23. Suppose the optimal sequential algorithm for performing a computation requires time T, and accessing a semaphore requires time k. Then an optimal parallel version of this computation using processes under the control of a single semaphore requires an execution time of at least $O(\sqrt{T/k})$.

Proof. If we use m processors the execution time must be at least T/m (see 1.1 in chapter 2). On the other hand, since the semaphore-operations are executed sequentially, they will require an execution time of km — i.e. the time required to carry out the semaphore-operations increases with the number of processors. The total execution time will be $\geq (T/m + km)$. The value of m that minimizes this occurs when the derivative of this expression with respect to m vanishes. This means that

$$-\frac{T}{m^2} + k = 0$$

This occurs when $m = \sqrt{T/k}$.

It is interesting to note that this result makes essential use of the fact that there is a single semaphore involved — and access of this semaphore by n processes requires a time of kn. Recent unpublished results of David Saunders shows that it is possible to set up a kind of tree of semaphores that will permit the synchronization of n processes in time that is $O(\lg n)$.

b. Another solution to this problem involves synchronizing the parallel processes. One common notation for this construct is:

```
cobegin
coend;
```

The idea here is that all processes execute the `cobegin` statement simultaneously and remain synchronized until the `coend` statement is reached. This solves the problem of processes interfering with each other when they access shared data by allowing the programmer to “choreograph” this common access. For instance, in the sorting algorithm on the Butterfly Computer, no semaphores were used, but processes never interfered with each other. The DYNIX operating system provides the `m_sync()` system call to implement cobegin. When a process calls `m_sync()` it spins (i.e. loops) until all processes call `m_sync()` — then all processes execute. The operating system uses a process scheduling algorithm that causes child processes to execute to completion without interruption (except by higher-priority processes). Consequently, once processes have been synchronized, they remain in sync if they execute the same instructions.

See § 1.1.1 (page 95) for information on another interesting paradigm for synchronizing parallel processes.

5.6.3. **Optimization of loops.** The theory of semaphores give rise to a number of issues connected with parallelizing loops in an algorithm. Suppose we have an algorithm that requires a number of computations for be performed in a loop, with very little dependency between different iterations of the loop. We assume that the loop has been divided up between several parallel processes — each process will execute a few iterations of the loop. Data that the loop references may be divided up into several categories:

1. **Local data.** This is data that is not shared — it is declared locally in each process. There is no need to use a semaphore in accessing this data.
2. **Read-only shared data.** This is data that is only read by different processes. There is no need to use a semaphore or lock to control access to it.

3. **Reduction data.** This is shared data that read and written by each process, but in a limited way. The data is used in a single associative commutative operation by each iteration of the loop and always, read and then written. Although it is shared, we do not need to use a semaphore every time we access such data. Since it is used in an associative commutative operation, the order in which the operations are applied is not significant. We can replace this reference variable in the loop by a local variable in each process. Only when the data from different processes is being combined need we use a semaphore to prevent simultaneous access. This saves a little execution time if each process is performing many iterations of the loop, because a semaphore inhibits parallelism. Here is an example in C — again this program is for the Sequent Symmetry computer:

```c
for (i=0; i < 1000; i++)
for (j=0; j < 1000; j++) sum= sum+a[i][j];
```

Here ‘sum’ is a reduction variable. Suppose each processor performs all iterations of the loop on ‘j’. Then we could replace this nested loop by:

```c
for (i=0; i<1000; i++)
{
    int local_sum=0;
    for (j=0; j<1000; j++)
    {
        local_sum=local_sum+a[i][j];
    }
    m_lock(); /* Set semaphore. */
    sum= sum+local_sum; /* Now accumulate values computed by different processors. */
    m_unlock(); /* Release semaphore. */
}
```

4. **Ordered data.** This is shared data whose final numerical value depends upon the iterations of the loop being carried out in precisely the same order as in a sequential execution of the loop. A loop containing such data is not suitable for parallelization (at least not in an asynchronous program). There are situations in which such a loop might be contained in a much larger block of code that does lend itself to parallelization. In this case we must guarantee that the loop is question is executed sequentially (even if execution of different parts of the loop is done on different processors). There are several ways this can be done: a. we can isolate this code in a procedure and allow only one processor to call the procedure. b. We can share the variable that describes the index of the loop (i.e. iteration-count) and make each processor wait for that to reach an appropriate value.

Alternative a is probably the more structured solution to this problem.

5. **Shared variables that are read and written, but for which the order of execution of the iterations of the loop is not significant.** Such variables must be locked via a semaphore before they can be accessed.

5.6.4. **Deadlocks.** The last general issue we will discuss is that of deadlock conditions. Suppose we have two processes that each try to access two data-items.
Since we are aware of the problems that can arise involving race-conditions, we use semaphores to control access to the data-items. Now suppose, for some reason (unlucky choices or timing), the first process locks up the first data-item at the same time that the second process locks up the second. Now both processes try to lock the other data-item. Since they can’t complete their computations (and release the data they have locked) until they get both data-items, they both wait forever. This is known as a deadlock condition.

The classic problem that illustrates the issue of deadlocks is the Dining Philosopher’s Problem, described by Dijkstra in [47].

Five philosopher’s sit at a round table with a huge plate of spaghetti in the center. There are five forks on the table — they lie between the philosophers. Each philosopher alternates between meditating and eating, and a philosopher needs two forks in order to eat. The philosophers are very egotistical, so no philosopher will relinquish a fork once they have picked it up until they finish eating.

Deadlocks can only occur if the following conditions are satisfied:

1. Processes can request (and lock) only part of the resources they need.
2. Processes can never relinquish resources they have requested until their computations are completed.
3. Processes cannot take resources away from other processes.
4. A circular chain of requests for resources can exist. Each process in the chain requests two or more resources and at least one of these is also requested by the next process in the chain.

We prevent deadlock by eliminating at least one of these conditions. It is generally impractical to try to eliminate conditions 2 and 3, but the other two conditions can be eliminated.

- We can prevent condition 1 from being satisfied by implementing semaphore sets. These are sets of semaphores with semaphore-down operations that apply atomically to the entire set. When a process performs a semaphore-down operation on the set, it is suspended if any of the semaphores in the set is 0. In this case none of the semaphores is lowered. In the case where all of the semaphores in the set are 1, they are all lowered simultaneously. In the context of the Dining Philosopher’s Problem, this is as if the philosophers could grab both of the forks at the same instant, so they either get both forks, or they get nothing. The ATT System V implementation of UNIX has such semaphore set operations.
- We can prevent condition 4 in several ways:
 - Careful algorithm design.
 - Use of resources in a fixed order.

5.7. Comparison of the SIMD and MIMD models of computation. As the title of this section suggests, we will prove that these two very general models of computation are essentially equivalent. They are equivalent in the sense that, with some restrictions, any algorithm that executes in \(T \) time units on one type of computer can be made to execute in \(kT \) time units on the other, where \(k \) is

\footnote{The reader may have noticed a few puns in this example!}
some constant. Before the reader concludes that this means the type of parallel computer one uses is unimportant, it is necessary to point out that the constant k may turn out to be very large. Many problems will naturally lend themselves to a SIMD or MIMD implementation, and any other implementation may turn out to be substantially slower. First we need the following definition:

Definition 5.24. An algorithm for a SIMD parallel computer will be called *calibrated*, if whenever processors access memory, they also compute the program-step in which the memory was last written. This means that there is a function $f : P \times T \times M \rightarrow T$, where

1. P is the set of processors in the SIMD computer.
2. T is the set of possible time-steps — a range of integers.
3. M is the set of memory-locations.

In addition, it means that the algorithm effectively computes this function f in the course of its execution.

Many *highly regular* algorithms for SIMD computers have this property. For instance, an algorithm that accesses *all* of memory in each program step can be easily converted into a calibrated algorithm.

Algorithm 5.25. Suppose A is a calibrated algorithm that runs in T time units on a SIMD-EREW parallel computer with n processors and uses m memory locations. Then it is possible to execute this algorithm on a MIMD-EREW computer with n processors in kT time units, using mT distinct semaphores, where k is the number of instruction-steps required to:

1. Check a semaphore;
2. Suspend a process;
3. Awaken a suspended process;

This result suggests that a MIMD computer is strictly better than a SIMD computer, in the sense that

- It looks as though MIMD computers can execute any program that runs on a SIMD computer.
- A MIMD computer can also run programs that require asynchronous processes.

The “catch” here is that:

1. Many SIMD algorithms are not calibrated, and there is a very significant cost associated with converting them into calibrated algorithms.
2. Most MIMD computers today (1992) have far fewer processors than SIMD computers;
3. The constant k may turn out to be very large.

Proof. The basic idea here is that race-conditions will not occur, due to the fact that the SIMD algorithm was designed to execute on a EREW computer. Race conditions only occur when multiple processors try to *read and write* to the same location in a given program step. The only problem with carrying out the simulation in an entirely straightforward way is that of synchronizing the processors. This is easily handled by using the fact that A is calibrated. Simply associate a *time-stamp* with each data-item being computed. Each processor of the MIMD
computer executes instructions of the SIMD program and maintains a program-counter. We attach a single semaphore to each simulated SIMD-memory location, and for each simulated time-step. This gives a total of \(mT \) semaphores, and they are all initially down except the ones for all of the processors at time 0. When a processor is about to read the data that it needs for a given program-step, it checks the semaphore for that data-item at the required time. When a processor completes a computation in a given simulated time-step, it executes an \(\text{up} \) operation on the corresponding semaphore.

We must prove that the execution-time of the simulated algorithm is as stated. We use induction on the number of program-steps in the SIMD algorithm. Certainly the conclusion is true in the ground-case of the induction. Suppose that it is true after \(t \) simulated program-steps. This means that all processors of the MIMD machine have simulated \(t \) program steps of the SIMD algorithm after \(kt \) time-units have elapsed. All processors are ready to begin simulating at least the \(t + 1 \)st program-step at this point. If any processors require data from the \(t \)th program step, they must access a semaphore that is attached to that data. Consequently, the elapsed time may be \(k \) before the algorithm can simulate the next SIMD program-step.

\[\square \]

The results of §5, particularly 5.1 on page 26 imply:

Corollary 5.26. Suppose \(A \) is a calibrated algorithm that runs in \(T \) time units on a SIMD-CRCW parallel computer with \(n \) processors. Then it is possible to execute this algorithm on a MIMD-EREW computer with \(n \) processors in \(kT \lg^2 n \) time units, where \(k \) is the number of instruction-steps required to:

1. Check a semaphore;
2. Suspend a process;
3. Awaken a suspended process;

In more generality, we have:

Algorithm 5.27. Suppose \(A \) is an algorithm that runs in \(T \) time units on a SIMD-EREW parallel computer with \(n \) processors. Then it is possible to execute this algorithm on a MIMD-EREW computer with \(3n \) processors in \(kT \lg n \) time units, where \(k \) is a constant.

This algorithm eliminates the requirement that the SIMD algorithm be calibrated. It is based upon the tree-of-semaphores construction of David Saunders (see page 51). Essentially, we insert a \textit{barrier} construct after each simulated SIMD instruction. We set up a tree of semaphores and, when processors finish a given simulated SIMD instruction-step (say instruction \(j \)) they \textit{wait} until \textit{all} processors complete this instruction-step. Then they begin their simulation of the next SIMD instruction-step.

In like fashion, it is possible to simulate MIMD algorithms on a SIMD machine. Suppose we have a MIMD algorithm that makes use of an instruction-set with \(I \) instructions \(\{a_1, \ldots, a_I\} \). Suppose that a SIMD computer can simulate \(a_j \) in time \(t_j \). Then we get:

Algorithm 5.28. Let \(A \) be an algorithm that runs in \(T \) time units on the MIMD computer described above. Then \(A \) can be run in \(T \sum_{j=1}^I t_j \) time units on the SIMD computer described above.
The idea of this simulation is extremely simple. Each program-step of the MIMD computer is simulated on the SIMD computer by a loop with \(l \) iterations. In iteration \(j \) all processors that should be executing instruction \(a_j \) run a simulation of this instruction — this requires time \(t_j \).

Note that simulations of this kind are extremely slow unless the simulated instruction-set is made as small as possible. Mr. Jeffrey Salvage is writing such a simulator to run on a Connection Machine (CM-2) computer\(^8\).

The question of how one can simulate a MIMD machine by a SIMD machine has also been considered by M. Wloka in his Doctoral Dissertation ([173]) and by Michael Littman and Christopher Metcalf in [102].

Exercises.

5.5. Why doesn’t the simulation algorithm 5.25 run up against the limitations implied by 5.23 on page 51?

5.6. Is it possible for the MIMD simulation in 5.25 to run *faster* than the original SIMD algorithm being simulated? Assume that the processors of the MIMD computer run at the same rate as those of the SIMD computer, and that the operations of checking semaphores take negligible time (so the constant \(k \) is 0).

\(^8\)This is his Master’s Thesis at Drexel University
CHAPTER 3

Distributed-Memory Models

1. Introduction.

The PRAM models of computation require that many processors access the same memory locations in the same program-steps. This creates engineering problems that have only been solved in a few cases. Most practical parallel computers are built along a Distributed Memory Model of some kind. In a distributed-memory architecture, the processors of the computer are interconnected in a communication-network and the RAM of the computer is local to the processors. Each processor can access its own RAM easily and quickly. If it needs access to a larger address-space than is contained in its local RAM, it must communicate with other processors over the network.

This leads to several interesting questions:

1. How do the various interconnection-schemes compare with each other in regard to the kinds of algorithms that can be developed for them?
2. How easy is it for processors to “share” memory over the communication network? This is related to the question of how easy it might be to port PRAM-algorithms to a network-computer.

It turns out that the answer to question 1 is that “almost any network will do”. Work of Vishkin and others shows that algorithms that are fast most of the time (i.e. probabilistic algorithms) can be developed for any network in which it is possible to reach 2^k other processors from a given processor in k steps. Question 2 has a similar answer — there exist efficient algorithms for simulating a PRAM-computer via a network-computer, if the network satisfies the condition mentioned above.

2. Generic Parallel Algorithms.

We will consider how several different networks handle many common algorithms. In order to do this, we follow Preparata and Vuillemin in [131] in defining a pair of generic parallel algorithms that can be easily implemented on the common network-computers. Many interesting parallel algorithms can be expressed in terms of these two.

We will assume that we have $n = 2^k$ data items stored in storage locations $T[0], T[1], \ldots, T[n - 1]$.

The notation $\text{OPER}(m, j; U, V)$ will denote some operation that modifies the data present in locations U and V, and depends upon the parameters m and j, where $0 \leq m < n$ and $0 \leq j < k$. We will also define the function $\text{bit}_j(m)$ to be the j^{th} bit in the binary representation of the number m. Given these definitions, we will say that an algorithm is in the DESCEND class if it is of the form:
Algorithm 2.1. DESCEND Algorithm.

for \(j \leftarrow k - 1 \) downto 0 do
 for each \(m \) such that \(0 \leq m < n \)
 do in parallel
 if \(\text{bit}_j(m) = 0 \) then
 \(\text{OPER}(m, j; T[m], T[m + 2^j]) \)
 endfor
 endfor
endfor

and we will say that an algorithm is of ASCEND class if it is a special case of

Algorithm 2.2. ASCEND Algorithm.

for \(j \leftarrow 0 \) to \(k - 1 \) do
 for each \(m \) such that \(0 \leq m < n \)
 do in parallel
 if \(\text{bit}_j(m) = 0 \) then
 \(\text{OPER}(m, j; T[m], T[m + 2^j]) \)
 endfor
 endfor
endfor

In many cases, algorithms that do not entirely fall into these two categories
can be decomposed into a sequence of algorithms that do — we will call these
algorithms composite. We will often want to regard \(\text{OPER}(m, j; U, V) \) as a pair of functions \((f_1, f_2)\):

\[
\begin{align*}
T[m] &\leftarrow f_1(m, j, T[m], T[m + 2^j]) \\
T[m + 2^j] &\leftarrow f_2(m, j; T[m], T[m + 2^j])
\end{align*}
\]

We will consider some common parallel algorithms that can be re-stated in the
context of ASCEND and DESCEND algorithms. Throughout the remainder of the
text, we will occasionally encounter more of these.

Example 2.3. The Bitonic Sorting algorithm (3.4 on page 21) is a DESCEND
algorithm — here the operation \(\text{OPER}(m, j; U, V) \) is just compare-and-swap (if the
elements are out of sequence).

Here is a refinement of the algorithm for forming the sum of \(n = 2^k \) numbers
given on page 7 on the Introduction: We will not only want the sum of the \(n = 2^k \)
numbers — we will also want all of the cumulative partial sums. Suppose we have
\(n \) processors and they are numbered from 0 to \(n - 1 \) and \(n \) numbers in an array, \(A \).
In step \(i \) (where steps are also numbered from 0 to \(n - 1 \) and \(n \) numbers in an array, \(A \))
let processor number \(u \), where

\[j2^{i+1} + 2^i \leq u \leq (j + 1)2^{i+1} - 1 \]

(here \(j \) runs through all possible values giving a result between 1 and \(n \)) add the value of \(A(j2^{i+1} + 2^i - 1) \) to \(A(u) \). Figure 3.1 illustrates this process.

It is easy for a processor to determine if its number is of the correct form —
if its identifying number is encoded in binary it can compute its value of \(j \) by
right-shifting that number \(i + 1 \) positions, adding 1 and right-shifting 1 additional
position. Then it can compute the corresponding value of \(j2^{i+1} + 2^i - 1 \) and carry
out the addition. It isn’t difficult to see that this procedure will terminate in \(\lg n \)
steps and at the end \(A \) will contain the cumulative sums of the original numbers.
A single extra step will compute the absolute values of the differences of all of the
2. GENERIC PARALLEL ALGORITHMS.

Partial sums from half of the sum of all of the numbers and the minimum of the differences is easily determined.

In step i processors numbered j compare the numbers in $A(j2^i - 2^{i-1})$ with those in $A(j2^i)$ and exchange them if the former is smaller than the latter. In addition, subscript numbers (which are stored in another array of n elements) are exchanged. Clearly, this determination of the minimum requires $\lg n$ steps also. Later, we will examine an improvement of this algorithm that only requires $n / \lg n$ processors — see 1.7 on page 271.

EXAMPLE 2.4. The algorithm for forming the sum of n numbers is an ASCEND algorithm where OPER($m, j; U, V$) has the following effect:

\[
U \leftarrow U \\
V \leftarrow U + V
\]

These two examples are fairly clear — the original statements of the algorithms in question were almost exactly the same the statements in terms of the ASCEND and DESCEND algorithms.

Now we will consider a few less-obvious examples:

PROPOSITION 2.5. Suppose we have $n = 2^k$ input data items. Then the permutation that exactly reverses the order of input data can be expressed as a DESCEND algorithm — here OPER($m, j; U, V$) simply interchanges U and V in all cases (i.e., independently of the values of U and V).

PROOF. We prove this by induction. It is clear in the case where $k = 1$. Now suppose the conclusion is known for all values of $k \leq t$. We will prove it for $k = t + 1$. The key is to assume that the original input-data was $T[i] = i, 0 \leq i \leq n - 1$. If we prove the conclusion in this case, we will have proved it in all cases, since the numerical values of the data-items never enter into the kinds of permutations that are performed by OPER($m, j; U, V$). The next important step is to consider the binary representations of all of the numbers involved. It is not hard to see that the first step of the DESCEND algorithm will alter the high-order bit of the input-data so that the high-order bit of $T[i]$ is the same as that of $n - 1 - i$. The remaining bits will not be effected since:
Bits 0 through \(t \) of the numbers \(\{0, \ldots, n/2 - 1\} \) are the same as bits 0 through \(t \) of the numbers \(\{n/2, \ldots, n - 1\} \), respectively.

The remaining iterations of the DESCEND algorithm correspond exactly to the algorithm in the case where \(k = t \), applied independently to the lower and upper halves of the input-sequence. By the inductive hypothesis, these iterations of the algorithm have the correct effect on bits 0 through \(t \) of the data. It follows that, after the algorithm executes, we will have \(T[i] = n - 1 - i \).

For instance:

Example 2.6. Suppose \(n = 2^3 \) and our input-data is:
\[
\{3, 7, 2, 6, 1, 8, 0, 5\}
\]
After the first iteration of the DESCEND algorithm (with OPER\((m, j; U, V)\) defined to always interchange \(U \) and \(V \)), we have:
\[
\{1, 8, 0, 5, 3, 7, 2, 6\}
\]
After the second iteration, we get:
\[
\{0, 5, 1, 8, 2, 6, 3, 7\}
\]
And after the final iterations we get:
\[
\{5, 0, 8, 1, 6, 2, 7, 3\}
\]
This is the reversal of the input sequence.

The reason we took the trouble to prove this is that it immediately implies that:

Proposition 2.7. The Batcher merge algorithm (3.6 on page 22) can be expressed as a composite of two DESCEND algorithms. The first phase reverses the upper half of the input-data via 2.5 above, and the second performs a Bitonic sort using 2.3.

This implies that the general Batcher sorting algorithm can be implemented with \(O(\lg n) \) DESCEND algorithms via the reasoning of 3.7 on page 23.

We will conclude this section by showing that the operation of shifting data can be implemented as an ASCEND algorithm:

Proposition 2.8. Suppose we have \(n = 2^k \) input data-items. Then the cyclic shift operation
\[
T[i] \leftarrow T[i - 1]
\]
\[
T[0] \leftarrow T[n - 1]
\]
for all \(i \) such that \(0 \leq i \leq n - 1 \), occurs as the result of an ASCEND algorithm with OPER\((m, j; U, V)\) defined to
- Interchange \(U \) and \(V \), if \(m \) is a multiple of \(2^{j+1} \).
- Leave \(U \) and \(V \) unchanged otherwise.

Proof. We use induction on \(k \). Clearly, the conclusion is true for \(k = 1 \)—the algorithm just interchanges the two input data items. As with the previous algorithm, we will assume the input is given by \(T[i] = i \), and will assume that the algorithm works for \(k \leq t \). Now suppose we are given a sequence of \(2^{t+1} \) data items:
\[
\{0, 1, \ldots, 2^{t+1}\}
\]
The inductive hypothesis implies that the first t iterations of the algorithm will produce:

$$\{ T[0] = 2^t - 1, T[1] = 0, \ldots, T[2^t - 1] = 2^t - 2, $$

$$T[2^t] = 2^{t+1} - 1, T[2^t + 1] = 2^t, \ldots, T[2^{t+1} - 1] = 2^{t+1} - 2 \}$$

The last iteration interchanges $T[0]$ and $T[2^t]$ so we get the sequence

$$\{ T[0] = 2^{t+1} - 1, T[1] = 0, \ldots, T[2^{t+1} - 1] = 2^{t+1} - 2 \}$$

3. The Butterfly Network.

Naturally, some networks are better than others for developing parallel algorithms. Essentially, they have structural properties that make it easier to describe the data-movement operations necessary for parallel computations. We will consider several such architectures in this chapter. In every case, physical computers have been constructed that implement the given architecture.

We first consider the butterfly layout — see figure 3.2 for a diagram that illustrates the basic idea. The nodes represent processors and the lines represent communication links between the processors.

The nodes of this graph represent processors (each of which has some local memory) and the edges are communication lines. This particular layout is of rank 3. The general rank k butterfly layout has $(k + 1)2^k$ processors arranged in 2^k columns with $k + 1$ processors in each column. The processors in a column are numbered from 0 to k (this number is called the rank of the processor) — these processors are denoted $d_{r,j}$, where r is the rank and j is the column number. Processor $d_{r,j}$ is connected to processors $d_{r-1,j}$ and $d_{r-1,j'}$, where j' is the number whose k-bit binary representation is the same as that of j except for the $r - 1$st bit from the left.
In some cases the 0th and kth (last) ranks are identified so that every processor has exactly 4 communication lines going out of it.

The fundamental properties of butterfly networks that interest us are the following:

3.1. 1. If the rank-0 processors (with all of their communication arcs) of a butterfly network of rank k are deleted we get two butterfly networks of rank k - 1.

2. If the rank-k processors (with all of their communication arcs) of a butterfly network of rank k are deleted we get two interwoven butterfly networks of rank k - 1.

Statement 1 is immediately clear from figure 3.2 — in this case the ranks of the remaining processors have to be changed. Statement 2 is not hard to see from figure 3.3.

Here the even columns, lightly shaded, form one butterfly network of rank 2, the odd columns form another.

The organization of the diagonal connections on the butterfly networks makes it easy to implement the generic ASCEND and DESCEND algorithms on it:

Algorithm 3.2. DESCEND Algorithm on the Butterfly computer. Suppose the input data is T[0], . . . , T[n - 1], with n = 2^k and we have a rank-k butterfly network. Start with T[i] in processor d_0,i, for 0 ≤ i ≤ n - 1 — the top of the butterfly diagram. In each phase of the Butterfly version of the DESCEND algorithm (2.1 on page 58) perform the following operations:

for j ← k - 1 downto 0 do
 Transmit data from rank k - 1 - j to rank k - j along both vertical and diagonal lines
 The processors in rank k - j and columns m and m + 2^j now contain the old values of T[m], T[m + 2^j].
 Compute OPER(m, j; T[m], T[m + 2^j])
endfor
Note: in the step that computes $\text{OPER}(m, j; T[m], T[m + 2^j])$, two separate computations are involved. The processor in column m computes the new value of $T[m]$ and the processor in column $m + 2^j$ computes the new value of $T[m + 2^j])$. Both of these processors have all of the input-data they need.

The ASCEND algorithm is very similar:

Algorithm 3.3. ASCEND Algorithm on the Butterfly computer. Suppose the input data is $T[0], \ldots, T[n - 1]$, with $n = 2^k$ and we have a rank-k butterfly network. Start with $T[i]$ in processor $d_{k,i}$, for $0 \leq i \leq n - 1$ — the bottom of the butterfly diagram. In each phase of the Butterfly version of the ASCEND algorithm (2.1 on page 58) perform the following operations:

for $j \leftarrow 0$ to $k - 1$
 Transmit data from rank $k - j$ to rank $k - j - 1$
 along both vertical and diagonal lines
 The processors in rank $k - j - 1$ and columns m and $m + 2^j$ now contain the old values of $T[m], T[m + 2^j]$
 Compute $\text{OPER}(m, j; T[m], T[m + 2^j])$
endfor

Note that the execution-times of the original ASCEND and DESCEND algorithms have at mostly been multiplied by a constant factor.

The results of the previous section immediately imply that that we can efficiently implement many common parallel algorithms on butterfly computers:

- Bitonic sort (see 2.3 on page 58).
- Computation of cumulative sums of n numbers (see 2.4 on page 59).
- the generalized Batcher sorting algorithm (see 2.7 on page 60).

In the future we will need the following:

Definition 3.4. An algorithm for the butterfly computer will be called **normal** if in each step either (but not both) of the following operations is performed:

1. data is copied from one rank to a neighboring rank;
2. calculations are performed within processors and no data movement occurs.

Normality is a fairly restrictive condition for an algorithm to satisfy — for instance it implies that the significant data is contained in a single rank in the computer in each step (which may vary from one step to the next). Most of the processors are inactive in each step. The DESCEND and ASCEND algorithms described above are clearly normal. Normal algorithms are important because it will turn out that they can be simulated on computers that have only $O(n)$ processors (rather than $O(n \lg n)$ processors, like the butterfly). In a sense normal algorithms are wasteful — they only utilize a single row of the butterfly in each time-step.

The fact that the Batcher sorting algorithm sort can be implemented on the butterfly computer implies that:

1In this context “efficiently” means that the program on the butterfly-computer has the same asymptotic execution-time as the PRAM implementation.

2Such algorithms, however, can be used to create online algorithms that continually input new data and process it.
LEMMA 3.5. An algorithm for an EREW-unbounded computer that executes in \(\alpha \) steps using \(n \) processors and \(\beta \) memory locations can be simulated on a rank \(\lg n \) butterfly computer executing in \(O(\alpha \lceil \beta/n \rceil \lg^2 n) \)-time using \(n(1 + \lg n) \) processors. Here each processor is assumed to have at least \(\beta/n \) memory locations of its own.

Here is the algorithm:

1. At the beginning of each simulated EREW machine cycle each processor makes up memory requests: we get an array of lists like \((\text{op}(i), (a(i) \mod n), |a(i)/n|, d(i), \text{dummyflag}) \), where \(\text{op}(i)=\text{READ} \) or \(\text{WRITE} \), \(a(i) \) is the address on the EREW computer, and \(d(i) \) is the data to be written, or empty, and \(\text{dummyflag} = \text{FALSE} \). We assume that memory in the EREW computer is simulated by the memory of the processors of the butterfly computer: location \(k \) in the EREW computer is represented by location \(|k/n| \) in processor \(k \mod n \) — it follows that the two middle entries in the list above can be interpreted as:
 (processor containing simulated location \(a(i) \), memory location within that processor of simulated location \(a(i) \));
2. We now essentially sort all of these memory requests by their second entry to route them to the correct processors. This sorting operation is basically what was outlined above but we must be a little careful — more than one memory request may be destined to go to the same processor. In fact we must carry out \(\lceil \beta/n \rceil \) complete sorting operations. In the first step we sort all memory requests whose third list element is 0, next all memory requests whose third element is 1, and so on. We must modify the sort algorithm given above slightly, to take into account incomplete lists of items to be sorted. In the beginning of the algorithm, if a processor doesn’t have any list item with a given value of the third element is makes up a dummy item with the dummyflag equal to \text{TRUE}. When the a given sorting operation is complete the dummy items are discarded.
3. When the \(\lceil \beta/n \rceil \) sorting operations are completed all processors will contain the (maximum of \(\lceil \beta/n \rceil \)) memory requests for accesses to memory locations that they contain. These requests are then processed sequentially in \(O(\lceil \beta/n \rceil) \)-time.
4. The results of the memory accesses are then sorted again (in one sorting operation) to send them back to the processors that originated the requests.

Note that the algorithm would be poly-logarithmic if there was some small upper-bound on \(\lceil \beta/n \rceil \). If \(\beta \) is very large (i.e. \(O(n^2) \)) the algorithm seriously falls short of being poly-logarithmic. The problem here is clearly not the amount of data to be sorted — that is always \(O(n) \) and it should be possible to sort this much data in \(O(\lg^2 n) \)-time. The problem is that a large amount of data might have to go to the same processor (in which case many other processors would receive no data). There is also a problem with the processing of the memory requests once they have been routed to the correct processors. In the algorithm above this is done sequentially within processors, but this is clearly wasteful since many other processors will be idle (because there are at most \(n \) data items to be processed overall). This situation is known as the Granularity Problem — it has been studied in connection with the theory of distributed databases as well as parallel processing algorithms. See \S 5 for a solution to this problem (and, consequently, an improved algorithm for simulating an EREW computer with large memory on a butterfly).

A similar result is possible for the CRCW computer. In order to prove this it is first necessary to develop an algorithm for moving data through a butterfly efficiently.
We immediately conclude:

Lemma 3.6. An algorithm for an CRCW-unbounded computer that executes in α steps using n processors and β memory locations can be simulated on a rank $\log n$ butterfly computer executing in $O(\alpha \lceil \beta/n \rceil \log^2 n)$-time using $n(1 + \log n)$ processors. Here each processor is assumed to have $\beta/n + 3$ memory locations of its own.

This algorithm is clearly normal since each of its steps are. That will turn out to imply that a CRCW computer can be simulated via a network that has $O(n)$ processors, and with no degradation in the time estimates.

Proof. We copy the proof of 5.1, substituting the sorting algorithm for the butterfly computer for that of §5 and the data movement algorithm above for the simple shift that takes place in the CRCW-read simulation of 5.1.

In addition, in the step of 5.1 in which processors compare data values with those of their neighbors to determine whether they contain the lowest indexed reference to a memory location, they can use the butterfly implementation of the ASCEND algorithm and 2.8 to first move the data to be compared to the same processors. Note that, due to the Granularity Problem mentioned above we will have to actually carry out the routing operation $[\beta/n]$ times. This accounts for the factor of $[\beta/n]$ in the time estimate. \square

Here is a sample programming language (Butterfly Pascal) that might be used on a butterfly-SIMD computer:

Definition 3.7. The language is like Pascal except that there exist:

1. pre-defined (and reserved) variables: **ROW, COLUMN, COPY_EXCHANGE, COPY — COPY_EXCHANGE** and **COPY** are areas of memory of size 1K — that represents the maximum amount of data that may be copied or copy-exchanged at any given time. **ROW and COLUMN** are integers which may never be the target of an assignment (and may never be used as a var-type parameter in a procedure or function call). They are equal, respectively, to the row- and column-numbers of a processor (so their values vary from one processor to another).

2. Procedures **copy_exch()** and **copy_up(), copy_down().** In order to copy-exchange some data it must be plugged into **COPY_EXCHANGE** and the procedure **copy_exch()** must be called. Assume that the pascal assignment operators to and from **COPY** and **COPY_EXCHANGE** are size-sensitive — i.e. **COPY**:x; copies a number of bytes equal to the size of the variable x and the corresponding statement is true for x:=**COPY**.

3. Assume an additional block structure:

 if <condition> **paralleldo** <stmt>; This statement evaluates the condition (which generally tests COLUMN number in some way) and executes the statement if the condition is true. This differs from the usual if-statement only in the sense that a subset of the processors may execute the statement in <stmt> and the remainder of the processors will attempt to "mark time" — they will not execute <stmt> but will attempt to wait the appropriate amount of time for the active processors to finish. This is accomplished as follows: in the machine language for the butterfly each
processor has a flag that determines whether it “really” executes the current instruction or merely waits. This flag is normally true (for active execution) but when the pascal compiler translates the parallel-if statement above it sets this flag in each processor according to whether the condition is true or not (for that processor). At the end of the parallel-if block the flag is again set to true.

Note: this statement is not necessary in order to execute a parallel program — execution of a program is normally done in parallel by all processors. This construct merely facilitates the synchronization of all processors across a row of the butterfly.

Assume that a given program executes simultaneously on all processors in the computer.

EXERCISES.

3.1. Suppose we had a computer that used the SIMD model of computation and the Butterfly architecture. It is, consequently, necessary for each processor to have a copy of the program to be run on it. Devise an algorithm to transmit a program from one processor to all of the others. It should execute in \(O(l \lg n) \)-time, where \(l \) is the length of the program.

3.2. Is it possible for the processors to get “out of synchronization” in butterfly pascal even though they use the parallel-if statement?

3.3. Why would it be difficult to synchronize processors in butterfly pascal without a parallel-if statement? (I.e. why couldn’t we force some processors to wait via conventional if statements and loops, for instance?)

3.4. Suppose we the Butterfly Pascal language available on a Butterfly computer of rank 5: Program (in butterfly pascal):

1. the butterfly sorting algorithm algorithm (Hints:
 a. In each case, pass a parameter to subroutines telling which column the processor is supposed to regard itself as being in — within the appropriate sub-butterfly;
 b. Confine activity to a single row of the butterfly at a time;
 c. use the parallel-if statement described above whenever you want to make a subset of the processors in a row execute some statements);
2. the simulation algorithm for a CRCW computer.

3.1. Discussion and further reading. The BBN Butterfly computer indirectly utilizes a butterfly network. It has a number of processors that communicate via a
system called an Omega switch. This is a butterfly network whose vertices are not completely-functional processors — they are gates or data-switches. See [99] for a discussion of the issues involved in programming this machine.

We will discuss some of the literature on algorithms for the butterfly network. In [16], Bhatt, Chung, Hong, Leighton, and Rosenberg develop algorithms for simulations that run on a butterfly computer. Hong

The Hypercube Architecture

3.2. Description. An n-dimensional hypercube is a graph that looks, in the 3-dimensional case, like a wire frame that models a cube. The rigorous definition of an n-dimensional hypercube is a graph H_n, where

1. The vertices of H_n are in a 1-1 correspondence with the n-bit binary sequences $a_0 \cdots a_{n-1}$ (so there are 2^n such vertices). Each vertex has an identifying number.

2. Two vertices $a_0 \cdots a_{n-1}$ and $a'_0 \cdots a'_{n-1}$ are connected by an edge if and only if these sequences differ in exactly one bit — i.e., $a_i = a'_i$ for $0 \leq i \leq n-1, i \neq k$ for some value of k and $a_k \neq a'_k$.

An n-dimensional hypercube computer has a processing-element at each vertex of H_n and connecting communication lines along the edges. It is not hard to see that each vertex has exactly n edges incident upon it. Its connectivity is, consequently, higher than that of the butterfly or perfect-shuffle architectures. One might think that such a hypercube-computer is harder to implement than a butterfly or perfect-shuffle computer.

The generic ASCEND and DESCEND algorithms (2.1 and 2.2 on page 58) are easy to implement on the hypercube architecture:

Algorithm 3.8. DESCEND Algorithm on the Hypercube computer. Suppose the input data is $T[0], \ldots, T[n-1]$, with $n = 2^k$ and we have an n-dimensional hypercube. Start with $T[m]$ in vertex m, for $0 \leq m \leq n-1$ — where vertex-numbers are as defined above. In iteration j of the Hypercube version of the DESCEND algorithm perform the following operations:

```plaintext
for j ← k − 1 downto 0 do
  for each m such that 0 ≤ m < n
    do in parallel
      if bit$_j$(m) = 0 then
        vertices $m$ and $m + 2^j$ exchange copies of their data via the unique common communication line
        Each processor computes OPER($m, j; T[m], T[m + 2^j]$)
        (Now having the necessary input-data: the old values of $T[m]$ and $T[m + 2^j]$)
    endfor
  endfor
endfor
```

Algorithm 3.9. ASCEND Algorithm on the Hypercube computer. Suppose the input data is $T[0], \ldots, T[n-1]$, with $n = 2^k$ and we have an n-dimensional hypercube. Start with $T[i]$ in vertex i, for $0 \leq i \leq n-1$ — where vertex-numbers are as defined above. In iteration j of the Hypercube version of the ASCEND algorithm perform the following operations:
for $j \leftarrow 0$ to $k - 1$ do
 for each m such that $0 \leq m < n$
 do in parallel
 if $\text{bit}_j(m) = 0$ then
 vertices m and $m + 2^j$ exchange copies
 of their data via the unique
 common communication line
 Each processor computes $\text{OPER}(m, j; T[m], T[m + 2^j])$
 (Now having the necessary input-data:
 the old values of $T[m]$ and $T[m + 2^j]$)
 endfor
 endfor
endfor

Note that the implementations of ASCEND and DESCEND on the hypercube
are more straightforward than on the butterfly network. These implementations
immediately imply that we have efficient implementations of all of the ASCEND
and DESCEND algorithms in § 2 on page 57. The hypercube architecture is in-
teresting for many reasons not related to having good implementations of these
generic algorithms. It turns out to be very easy to map certain other interesting
architectures into the hypercube. We will spend the rest of this section looking at
some of these.

DEFINITION 3.10. Let a and b be sequences of bits of the same length. The
Hamming distance between these sequences is the number of bit-positions in the
two sequences, that have different values.

It is not hard to see that the distance between two different vertices in a hy-
percube is equal to the Hamming distance between the binary representations of
their vertex-numbers.

Figure 3.4 shows a 5 dimensional hypercube.

A six dimensional hypercube is the result of taking two copies of this graph
and attaching each vertex of one copy to a corresponding vertex of the other — and
each time the dimension is raised by 1 the complexity of the graphs doubles again. This is meant to convey the idea that high-dimensional hypercubes might be difficult to implement. Nevertheless, such computers are commercially available. The Connection Machine from Thinking Machines (CM-2 model) is a 12-dimensional hypercube computer with 64000 processors (it actually has 16 processors at each vertex of a 12-dimensional hypercube).

It turns out that an \(n \)-dimensional hypercube is equivalent to an order-\(n \) butterfly network with all of the columns collapsed to single vertices, and half as many edges. Basically, the result of collapsing the columns of a butterfly to vertices is a hypercube with all of its edges doubled.

It is not hard to see that any normal algorithm for a degree-\(n \) butterfly network can easily be ported to an \(n \)-dimensional hypercube computer with no time degradation.

Lemma 3.11. Every normal algorithm that runs on a degree-\(k \) butterfly network (that has \(k2^k \) processors) in \(t \) time units can run on a \(k \)-dimensional hypercube computer in \(O(t) \) time.

Hypercubes are interesting as models for parallel communication because of the fact that many other communication-schemes can be mapped into hypercubes. In order to see how this is done, we discuss the subject of Gray codes. We will be particularly interested in how one can map lattice organizations into hypercubes.

Definition 3.12. The \(k \)-bit reflected Gray code sequence is defined recursively via:

- The 1-bit sequence is \(\{0, 1\} \);
- If \(\{s_1, \ldots, s_m\} \) is the \(k-1 \)-bit reflected Gray code sequence, then the \(k \)-bit sequence is \(\{0s_1, \ldots, 0s_m, 1s_m, \ldots, 1s_1\} \).

The \(k \)-bit reflected Gray code sequence has \(2^k \) elements.

Here are the first few reflected Gray code sequences:

1. \(\{0, 1\} \)
2. \(\{00, 01, 11, 10\} \)
3. \(\{000, 001, 011, 010, 110, 111, 101, 100\} \)

The important property of Gray codes that will interest us is:

Proposition 3.13. In a \(k \)-bit Gray code sequence, the Hamming distance between any two successive terms, and the Hamming distance between the first term and the last term is 1.

Proof. This follows by a simple induction. It is clearly true for the 1 bit Gray codes. If it is true for \(k-1 \) bit Gray codes, then the inductive definition implies that it is true for the \(k \) bit Gray codes, because each half of this sequence is just the concatenation of the \(k-1 \) bit Gray codes with a fixed bit (0 of the first half, and 1 for the second). This leaves us with the question of comparing:

- the two middle terms — but these are just \(0s_m, 1s_m \), and they differ in only 1 bit.
- the first and last elements — but these are \(0s_1, 1s_1 \), and they just differ in 1 element.
Since vertices whose numbers differ in only one bit are adjacent in a hypercube, the k bit Gray code sequences provides us with a way to map a loop of size 2^k into a hypercube:

Proposition 3.14. Suppose $S = \{s_1, \ldots, s_n\}$ be the k bit Gray code sequence. In addition, suppose we have a d dimensional hypercube, where $d \geq k$ — its vertices are encoded by d bit binary numbers. If z is any $d - k$ bit binary number, then the sequences of vertices whose encoding is $\{zs_1, \ldots, zs_n\}$ is an embedding of a loop of size n in the hypercube.

We can use multiple Gray code sequences to map a multi-dimensional lattice of vertices into a hypercube of sufficiently high dimension. This lattice should actually be regarded as a torus. Here is an example:

Example 3.15. Suppose we have a two dimensional lattice of processors that we want to simulate on a hypercube computer whose dimension is at least 7. Each processor in this lattice is denoted by a pair of numbers (u, v), where (we suppose) u runs from 0 to 3 (so it takes on 4 values) and v runs from 0 to 15 (so it takes on $2^4 = 16$ values). We use the 3 and 4 bit Gray codes:

- 3 bit Gray code, S_1: 000, 001, 011, 010, 110, 111, 101, 100
- 4 bit Gray code, S_2: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

and we will assume that both of these sequences are numbered from 0 to 7 and 0 to 15, respectively. Now we map the processor numbered (u, v) into the element of the hypercube location whose binary representation has low-order 7 bits of $\{S_1(u), S_2(v)\}$. Processor $(2, 3)$ is sent to position 0100011 = 67 in the hypercube.

Note that size of each dimension of the lattice must be an exact power of 2. The general statement of how we can embed lattices in a hypercube is:

Proposition 3.16. Let L be a k-dimensional lattice of vertices such that the i^{th} subscript can take on 2^i possible values. Then this lattice can be embedded in an r-dimensional hypercube, where $r = \sum_{i=1}^{k} r_i$. An element of L can be represented by a sequence of k numbers $\{i_1, \ldots, i_k\}$, and the embedding maps this element to the element of the hypercube whose address has the binary representation $\{S(i_1, r_1), \ldots, S(i_k, r_k)\}$, where $S(q, r)$ denotes the q^{th} element of the r-bit reflected Gray code.

This mapping has been implemented in the hardware of the Connection Machine (CM-2 model), so that it is easy to define and operate upon arrays of processors that have the property that the range of each subscript is exactly a power of 2.

Many parallel computers have been built using the hypercube network architecture including:

- the nCUBE computers, including the nCUBE/7 and nCUBE 2;
- The Cosmic Cube.
- the Connection Machines (CM-1 and CM-2) from Thinking Machines Corporation. These are SIMD computers discussed in more detail later in this book (see § 3 on page 101).
The last network-computer we will consider is the shuffle-exchange network. Like the others it is physically realizable and has the ability to efficiently simulate unbounded parallel computers. It has the added advantage that this simulation can be done without any increase in the number of processors used.

Suppose \(n \) is a power of 2. Then a degree-\(n \) shuffle exchange network is constructed as follows: Start with \(n \) processors, numbered 0 to \(n - 1 \), arranged in a linear array except that processor \(i \) is connected to:

1. processor \(i + 1 \) if \(i \) is even;
2. processor \(j \), where \(j \equiv 2i \pmod{n - 1} \);
3. itself, if \(i = n - 1 \) (rather than processor 0, as rule b would imply).

Figure 3.5 shows an 8-node shuffle-exchange network.

Here the shaded lines represent exchange lines: data can be swapped between processors connected by such lines — this movement will be denoted EX(\(i \)).
The dark curved lines represent the shuffle lines — they connect processor i with $2i \mod n - 1$ (in the pascal sense). Although data can move in both directions along these lines one direction is regarded as forward and the other is regarded as reverse.

There are two main data-movement operations that can be performed on the shuffle-exchange network:

1. **Shuffle, PS** (i) (for “perfect shuffle”). Here data from processor i is moved to processor $2i \mod n - 1$. The inverse operation $PS^{-1}(i)$ is also defined (it moves data from processor i to processor j, where $i \equiv 2j \pmod{n - 1}$).
 Most of the time these operations will be applied in parallel to all processors — the parallel operations will be denoted PS and PS^{-1}, respectively.

2. **Exchange, EX** (i). Here data from processor i is moved to processor $i + 1$ if i is even and $i - 1$ if i is odd.

We will consider the effects of these operations. Suppose $b(i)$ is the binary representation of the number i.

Proposition 3.17. Suppose processor i has data in it and:

1. $PS(i)$ will send that data to processor j, or;
2. $EX(i)$ will send that data to processor j'.

Then:

1. $b(j)$ is the result of cyclically permuting $b(i)$ one bit to the left;
2. $b(j')$ is the same as $b(i)$ except that the low order bit is different.

Proof. Recall that we are considering n to be a power of 2. Statement b is clear. Statement a follows from considering how j is computed: i is multiplied by 2 and reduced $\pmod{n - 1}$. Multiplication by 2 shifts the binary representation of a number one bit to the left. If the high-order bit is 1 it becomes equal to n after multiplication by 2 — this result is congruent to 1 $\pmod{n - 1}$.

Our main result concerning the shuffle-exchange network is:

Lemma 3.18. Every normal algorithm that runs on a degree-k butterfly network (that has $k2^k$ processors) in t time units can run on a 2^k-processor shuffle-exchange network in $O(t)$ time.

Proof. We assume that the processors of the shuffle-exchange network can carry out the same operations as the processors of the butterfly. The only thing that remains to be proved is that the data-movements of the butterfly can be simulated on the shuffle-exchange network.

We will carry out this simulation (of data-movements) in such a way that the processors of the shuffle-exchange network correspond to the columns of the butterfly.

In other words we will associate all processors of column i of the butterfly with processor i in the shuffle-exchange network. That it is reasonable to associate all processors in a column of the butterfly with a single processor of the shuffle-exchange network follows from the fact that the algorithm we are simulating is normal — only one rank of processors is active at any given time.

Recall how the processors of the butterfly were connected together. Processor $d_{r,i}$ (r is the rank) was connected to processors $d_{r-1,i}$ and $d_{r-1,i'}$, where i and i'
differ (in their binary representations) only in the \(r - 1\)st bit from the left. Let us simulate the procedure of moving data from \(d_{r,j}\) to \(d_{r-1,j'}\):

Perform \(PS'\) on all processors in parallel. Proposition 3.17 implies that this will cyclically left-shift the binary representation of \(i\) by \(r\)-positions. The \(r - 1\)st bit from the left will wind up in the low-order position. \(EX\) will alter this value (whatever it is) and \(PS^{-r}\) will right-shift this address so that the result will be in processor \(i'\).

We have (in some sense) simulated the copy operation from \(d_{r,j}\) to \(d_{r-1,j'}\): by \(PS^{-r} \circ EX(PS'(i)) \circ PS'\). The inverse copy operation (from \(d_{r-1,j'}\) to \(d_{r,j}\)) is clearly simulated by \((PS^{-r} \circ EX(PS'(i)) \circ PS')^{-1} = PS^{-r} \circ EX(PS'(i)) \circ PS'\).

Incidentally — these composite operations must be read from right to left.

There are several obvious drawbacks to these procedures: we must carry out \(O(\lg n)\) steps (to do \(PS'\) and \(PS^{-r}\)) each time; and we must compute \(PS'(i)\) inside each \(EX\).

These problems are both solved as follows: Note that after doing the copy from \(d_{r,j}\) to \(d_{r-1,j'}\): the data will be in rank \(r - 1\) — consequently the next step will be an operation of the form \(PS^{1-r} \circ EX(PS^{-1}(i')) \circ PS^{-1}\) — and the composite will have steps of the form \(PS^{-1} \circ PS^{-r} = PS^{-1}\).

Consequently the simulations aren’t so time-consuming if we compose successive operations and cancel out terms that are inverses of each other. In fact, with this in mind, we can define:

- **Simulation of** \(d_{r,j} \rightarrow d_{r-1,j'}: PS^{-1} \circ EX(PS'(i))\).
- **Simulation of** \(d_{r,j} \rightarrow d_{r-1,j}: PS^{-1}\) (here we have represented movement of \(d_{r,j} \rightarrow d_{r-1,j}\) by \(PS^{-r} \circ PS'\) before canceling).

Here we have lost the simple correspondence between columns of the butterfly and processors of the shuffle-exchange network. Now processor \(d_{r,j}\) in the butterfly corresponds to processor \(PS'(i)\) of the shuffle-exchange network — here we are regarding \(PS\) as an operation performed upon numbers (like squaring) as well as a data-movement command on a computer.

This correspondence is illustrated by figure 3.6.

Here the bottom row represents the processors of the shuffle-exchange computer and the top rows represent the butterfly computer (with its interconnections drawn very lightly).

The correspondence between ranks 1, 2 and 3 of the butterfly and the shuffle-exchange computer are indicated by curved lines. The top row of the butterfly corresponds to the shuffle-exchange computer in exactly the same way as the bottom row so no lines have been drawn in for it.

It is easy to keep track of this varying correspondence and solve the second problem mentioned above by doing the following: in each step manipulate a list (data to be moved, column #). The first item is the data upon which we are performing calculations. The second is the column number of the butterfly that the data is supposed to be in. In each step we only carry out the \(PS\) and \(PS^{-1}\) operations on the column numbers so that they reflect this varying correspondence. Our final simulation program can be written as:

- **Simulation of** \(d_{r,j} \rightarrow d_{r-1,j}: PS^{-1} \circ \text{(column \# i)}\) — the \(EX\)-operation is only carried out on the data portion of the lists — the \(PS^{-1}\) is carried out on both portions.
• Simulation of \(d_{r,i} \rightarrow d_{r-1,i} : PS^{-1} \) — carried out on both portions of whole lists.

• Simulation of \(d_{r,i} \rightarrow d_{r+1,i} : EX(\text{column \# } i') \circ PS \) — the EX-operation is only carried out on the data portion of the lists — the PS is carried out on both portions. Note that we must carry out the EX-operation on the processor whose column\# field is \(i' \) rather than \(i \). It is easy for a processor to determine whether it has column\# \(i' \), however. The processors with column numbers \(i \) and \(i' \) will be adjacent along an EX-communication line before the PS-operation is carried out. So our simulation program has the processors check this; set flags; perform PS, and then carry out EX-operations if the flags are set.

• Simulation of \(d_{r,i} \rightarrow d_{r+1,i} : PS \) — carried out on both portions of whole lists.

This immediately implies that we can implement the DESCEND and ASCEND algorithms on the shuffle-exchange computer — we “port” the Butterfly versions of these algorithms (3.2 and 3.3 on page 63) to the shuffle-exchange computer.

Algorithm 3.19. **DESCEND Algorithm on the Shuffle-Exchange Computer.** Suppose the input data is \(T[0], \ldots, T[n-1] \), with \(n = 2^k \) and we have a shuffle-exchange computer with \(n \) processors. The first elements of these lists will be called their *data portions*. In each phase of the Shuffle-Exchange version of the DESCEND algorithm (2.1 on page 58) perform the following operations:

do in parallel (all processors)

\[
L_1 \leftarrow \{T[i],i\} \text{ in processor } i
\]

for \(j \leftarrow k - 1 \) **downto** 0 **do**
do in parallel (all processors)
Perform PS
L_2 \leftarrow L_1
Perform EX upon the
data-portions of L_2 in each processor.
Each processor now contains two lists:
L_1 = \text{old} \{ T[m], m \}, L_2 = \text{old} \{ T[m + 2^j], m \}

Compute OPER(m, j; T[m], T[m + 2^j])

Here is an example of this algorithm. Suppose n = 2^3, so that k = 3. We have
an array of 8 processors with a data-item t_i in processor i. If we use binary notation
for the processor-numbers we start out with:

\begin{align*}
(000, t_0) & \quad (001, t_1) & \quad (010, t_2) & \quad (011, t_3) & \quad (100, t_4) & \quad (101, t_5) & \quad (110, t_6) & \quad (111, t_7) \\
\end{align*}

In the first step of the DESCEND algorithm, we perform PS. The result is:

\begin{align*}
(000, t_0) & \quad (100, t_4) & \quad (001, t_1) & \quad (101, t_5) & \quad (010, t_2) & \quad (110, t_6) & \quad (011, t_3) & \quad (111, t_7) \\
\end{align*}

Note that the data-elements that are now adjacent to each other are the ones
whose original index-numbers differ by 2^2 = 4:

\begin{itemize}
\item \{000, t_0\} and \{100, t_4\};
\item \{001, t_1\} and \{101, t_5\};
\item \{010, t_2\} and \{110, t_6\};
\item \{011, t_3\} and \{111, t_7\};
\end{itemize}

We are now in a position to perform OPER(m, j; T[m], T[m + 2^j]) (after exchanging
data via an EXCHANGE operation).

The next PS operation results in the array

\begin{align*}
(000, t_0) & \quad (010, t_2) & \quad (100, t_4) & \quad (110, t_6) & \quad (001, t_1) & \quad (011, t_3) & \quad (101, t_5) & \quad (111, t_7) \\
\end{align*}

Now the pairs of data-items that are comparable via the EXCHANGE opera-
tion are

\begin{itemize}
\item \{000, t_0\} and \{010, t_2\};
\item \{100, t_4\} and \{110, t_6\};
\item \{001, t_1\} and \{011, t_3\};
\item \{101, t_5\} and \{111, t_7\};
\end{itemize}

and we can perform the next phase of the DESCEND algorithm. The final PS
operation shuffles the array elements back to their original positions, and we can
use the EXCHANGE operation to operate on even-numbered elements and their
corresponding next higher odd-numbered elements.

Algorithm 3.20. ASCEND Algorithm on the Shuffle-Exchange computer.
Suppose the input data is T[0], \ldots, T[n-1], with n = 2^k and we have a shuffle-
exchange computer with n processors. The first elements of these lists will be
called their data portions. In each phase of the Shuffle-Exchange version of the
ASCEND algorithm (2.2 on page 58) perform the following operations:

do in parallel (all processors)
L_1 \leftarrow \{ T[i], i \} in processor i

for j \leftarrow 0 to k - 1 do
3. DISTRIBUTED-MEMORY MODELS

do in parallel (all processors)

\[L_2 \leftarrow L_1 \]

Perform EX upon the
data-portions of \(L_2 \) in each processor.

Perform \(\text{PS}^{-1} \) in each processor, with both lists

Each processor now contains two lists:

\[L_1 = \text{old} \{T[m], m\}, L_2 = \text{old} \{T[m + 2^j], m\} \]

Compute \(\text{OPER}(m, j; T[m], T[m + 2^j]) \)

Corollary 3.21. An algorithm for an CRCW-unbounded computer that executes in \(\alpha \)-steps using \(n \) processors and \(\beta \) memory locations can be simulated on an\(n \)-processor shuffle-exchange computer in \(O(\alpha \lceil \beta / n \rceil \log^2 n) \)-time. Each processor of the shuffle-exchange computer must have at least \((\beta / n) + 3\) memory locations of its own.

Here we are assuming that \(n \) is a power of 2.

3.3. Discussion and further reading. The shuffle-exchange network is also frequently called the DeBruijn network. This network, and variations on it, are widely used in existing parallel computers.

- The NYU Ultra Computer project is current building Ultra III which will be based on a shuffle-exchange network. See [140] for some additional material on this type of machine.

- Many new computer systems under development will use this design, including:
 1. the Triton project at the University of Karlsruhe. Here, according to Dr. Christian Herter³:

 "... to select a topology with very low average diameter because the average diameter is directly responsible for the expected latency of the network. The best network class we found are DeBruijn nets also known as perfect shuffle (which is nearly equivalent to shuffle exchange). Those networks have an average diameter very close to the theoretical limit. Each node has indegree two and outdegree two (constant for all network sizes) the (max.) diameter is still \(\log N \) the average diameter is approximately \(\log N - 1.7 \)."

 This machine is intended to be a SIMD-MIMD hybrid with that initial would have 256 processors. See [71] for more information on this project.

 2. the Cedar Machine, begin developed at the Center for Supercomputing Research and Development, University of Illinois at Urbana Champaign. See [55].

Exercises.

³Private communication.
4. Cube-Connected Cycles

One of the limiting factors in designing a computer like the butterfly computer is the number of connections between processors. Clearly, if processors are only allowed to have two communication lines coming out of them the whole network will form a tree or ring. Since both of these networks only allow a limited amount of data to flow through them, it is clear that networks with high data flow must have at least three communication lines coming out of most of the processors. The butterfly network is close to this optimum since it has four lines through most processors. It is possible to design a network that has the same asymptotic performance as the butterfly with precisely three communications lines coming out of each processor. This is called the cube-connected cycles (or CCC) network. Figure 3.7 shows how the processors are interconnected — as usual the nodes represent processors and the edges represent communication lines. These were first described by Preparata and Vuillemin in [130].

In general a k-dimensional CCC is a k-dimensional cube with the vertices replaced with loops of k processors. In a k-dimensional cube every vertex has k edges connected to it but in the k-dimensional CCC only one of the processors in a loop connects to each of the k dimensions so that each processor has only three communication lines connected to it — two connecting it to other processors in its loop and one connecting it to another face of the cube.

If we identify rank 0 processors in the butterfly with rank k processors we get a graph that turns out to contain the k-dimensional CCC network as a subgraph.
In addition, every data movement in the butterfly network can be simulated in the embedded CCC, except that some movements in the butterfly require two steps in the CCC since it lacks some of the edges of the butterfly.

Now we are ready to discuss the development of algorithms for the CCC network. In order to implement an efficient scheme for addressing processors, we make an additional assumption about the dimension of the hypercube that is the backbone of the network. We will assume that \(n = 2^k \), and that \(k \) is of the form \(k = r + 2^r \). We are, in effect, assuming that the dimension of the hypercube that forms the backbone of a Cube-Connected Cycles network must be a power of 2 (i.e., \(2^r \)). Although Cube-Connected Cycles of other dimensions are perfectly well-defined, the addressing scheme that we will present imposes this requirement (the 3-dimensional example in figure 3.7 on page 77 doesn’t meet this requirement).

Each vertex has a \(k \)-bit address, which is regarded as a pair of numbers \((a, \ell)\), where \(a \) is a \(k - r \) bit number and \(\ell \) is an \(r \) bit number. Each vertex has three connections to it:

- \(F \) — the forward connection. \(F(a, \ell) \) is connected to \(B(a, (\ell + 1) \mod 2^r) \);
- \(B \) — the back connection. \(B(a, \ell) \) is connected to \(F(a, (\ell - 1) \mod 2^r) \);
- \(L \) — the lateral connection. \(L(a, \ell) \) is connected to \(L(a + \epsilon 2^\ell, \ell) \), where

\[
\epsilon = \begin{cases}
1 & \text{if the } \ell\text{th bit of } a \text{ is } 0 \\
-1 & \text{if the } \ell\text{th bit of } a \text{ is } 1
\end{cases}
\]

The forward and back connections connect the vertices within cycles, and the lateral connections connect different cycles, within the large-scale hypercube. If we shrink each cycle to a single vertex, the result is a hypercube, and the lateral connections are the only ones that remain.

In fact Zvi Galil and Wolfgang Paul show that the cube-connected cycles network could form the basis of a general-purpose parallel computer that could efficiently simulate all other network-computers in [54].

We will present several versions of the DESCEND and ASCEND algorithms. The first will closely mimic the implementations of these algorithms for the butterfly computer. Each loop the the CCC network will have a single data-item, and this will be cyclically shifted through the network in the course of the algorithm. This algorithm only processes \(2^{k-r} \) data-items, but does it in \(O(k - r) \) steps. We define the loop-operations:

Definition 4.1. Define the following data-movement operations on the CCC network:

- **F-LOOP** is the permutation that transmits all data within the cycles of the CCC in the forward direction, i.e., through the \(F(a, \ell) \) port.
- **B-LOOP** is the permutation that transmits all data within the cycles of the CCC in the backward direction, i.e., through the \(B(a, \ell) \) port.

In the following algorithm, we assume that processor \(i \) has two memory-locations allocated: \(T[i] \) and \(T'[i] \).

Algorithm 4.2. Wasteful version of the DESCEND algorithm The input consists of \(2^{k-r} \) data items stores, respectively, in \(D[0], \ldots, D[2^{k-r} - 1] \).
The wasteful version of the ASCEND algorithm

Now we have more data to work with — the "wasteful" algorithm only

\[T[i2^r + k - r - 1] \leftarrow D[i] \]

for \(j \leftarrow k - r - 1 \) downto 0 do

\[\text{do in parallel (for all processors)} \]

\[\text{Perform F-LOOP} \]

Note that processor number \(i2^r + k - r - 1 \) is the processor with coordinates \((i, k - r - 1)\).

Algorithm 4.3. Wasteful version of the ASCEND algorithm

The input consists of \(2^{k-r} \) data items stores, respectively, in \(D[0], \ldots, D[2^{k-r} - 1] \).

\[T[i2^r] \leftarrow D[i] \]

for \(j \leftarrow 0 \) to \(k - r - 1 \) do

\[\text{do in parallel (for all processors)} \]

\[\text{Perform B-LOOP} \]

Now we will present the implementations of DESCEND and ASCEND of Preparata and Vuillemin in [131]. Their implementations utilize all of the processors in each time-step. Their algorithms for the \(n \)-processor CCC operate upon \(n \) data-items and execute in the same asymptotic time as the generic versions \((O(z \cdot \lg n), \text{where } z \text{ is the execution-time of OPER}(a, b, U, V))\).

We begin with the DESCEND algorithm. To simplify the discussion slightly, we will initially assume that we are only interested in carrying out the first \(k - r \) iterations of the DESCEND algorithm — so the for-loop only has the subscript going from \(k - 1 \) to \(k - r \). We can carry out the these iterations of the algorithm in a way that is somewhat like the "wasteful" algorithm, except that:

- Now we have more data to work with — the "wasteful" algorithm only had data in a single processor in each loop of the CCC.
We must process each data-item at the proper time. This means that in the first few steps of the algorithm, we cannot do anything with most of the data-items. For instance, in the first step, the only data item that can be processed is the one that the "wasteful" algorithm would have handled — namely, the one with \(\ell \)-coordinate equal to \(k - 1 \). In the second step this data-item will have been shifted into the processor with \(\ell \)-coordinate equal to \(k - 2 \), but another data item will have shifted into the processor with coordinate \(k - 1 \). That second data-item will now be ready to be processed in the first iteration of the DESCEND algorithm.

In this manner, each step of the algorithm will "introduce" a new element of the loop to the first iteration of the DESCEND algorithm. This will continue until the \(k + 1 \)st, at which time the element that started out being in the processor with \(\ell \)-coordinate \(k - 2 \) will be in position to start the algorithm (i.e., it will be in the processor with \(\ell \)-coordinate \(k - 1 \)). Now we will need another \(k - r \) steps to complete the computations for all of the data-items.

We must have some procedure for "turning off" most of the processors in some steps.

Algorithm 4.4. If we have an \(n \)-processor CCC network and \(n \) data-items \(T[0], \ldots, T[n - 1] \), where \(T[i] \) is stored in processor \(i \) (in the numbering scheme described above). Recall that \(k = r + 2^r \).

do in parallel (for all processors)
for \(i \leftarrow 2^r - 1 \textbf{ downto } -2^r \) **do**
 do in parallel (for all processors whose \(\alpha \) coordinate
 satisfies \(0 \leq \alpha < 2^{k-r} \)
 and whose \(\ell \)-coordinate satisfies
 \(\max(i, 0) \leq \ell < \min(2^r, 2^r + i) \))
 (if \(\text{bit}(\alpha) = 0 \) then processor \((\alpha, \ell) \) contains
 \(T[\alpha 2^r + \ell] \)
 and if \(\text{bit}(\alpha) = 1 \) then processor \((\alpha, \ell) \) contains
 \(T[\alpha 2^r + \ell + 2^{\ell+r}] \))
 All processors transmit their value of \(T[*] \) along a lateral communication line
 Each processor \((\alpha, \ell) \) computes \(\text{OPER}(a, b; U, V) \)
 where: \(a = \alpha 2^r + ((i - \ell - 1) \mod 2^r) \)
 \(b = \ell + r \)
 \(U = T[\alpha 2^r + \ell] \)
 \(V = T[\alpha 2^r + \ell + 2^{\ell+r}] \)
 B-LOOP
endfor

This handles iterations \(k - 1 \) to \(k - r \). The remaining iterations do not involve any communication between distinct cycles in the CCC network.

We will discuss how the remaining iterations of the algorithm are performed later.
We will analyze how this algorithm executes. In the first iteration, \(i = 2^r - 1 \), and the only processors, \((a, \ell)\), that can be active must satisfy the conditions

\[
0 \leq a < 2^{k-r} \\
\max(i, 0) = 2^r - 1 \leq \ell < \min(2^r, 2^r + i) = 2^r
\]

so \(\ell = 2^r - 1 \). Data-item \(T[a2^r + 2^r - 1] \) is stored in processor \((a, 2^r - 1)\), for all \(a \) satisfying the condition above. In this step

\[
a = a2^r + \left((2^r - 1) - \ell - 1\right) \mod 2^r \\
= a2^r + (-1 \mod 2^r) \\
= a2^r + 2^r - 1 \\
b = \ell + r = k - 1 \quad (\text{recalling that } r + 2^r = k)
\]

The lateral communication-lines in these processors connect processor \((a, 2^r - 1)\) to \((a', 2^r - 1)\), where \(|a - a'| = 2^{k-1} = 2^{k-r-1}\). These two processors contain data-items \(T[a2^r + 2^r - 1] \) and \(T[a2^r + 2^r - 1] \), where

\[
|\{a2^r + 2^r - 1\} - \{a'2^r + 2^r - 1\}| = 2^r |(a - a')| = 2^r \cdot 2^{k-r-1} = 2^{k-1}
\]

Consequently, in the first iteration, the algorithm does exactly what it should — it performs \(\text{OPER}(a, b; U, V) \), where

\[
a = a2^r + \ell \\
b = k - 1 \\
U = a \text{ if } \text{bit}_{k-1}(a) = 0, \text{ in which case} \\
V = a + 2^{k-1}
\]

In the next step, \(\ell \) can only take on the values \(2^r - 1 \) and \(2^r - 2 \). Our original data that was in processor \((a, 2^r - 1)\) has been shifted into processor \((a, 2^r - 2)\). In this case

\[
a = a2^r + \left((2^r - 2) - \ell - 1\right) \mod 2^r \\
= a2^r + (-1 \mod 2^r) \\
= a2^r + 2^r - 1 \\
b = \ell + r = k - 2
\]

Note that the quantity \(a \) remains unchanged — as it should. This is because \(a \) represents the index of that data-item being processed, and this hasn’t changed. The original data-item was shifted into a new processor (with a lower \(\ell \)-coordinate), but the formula for \(a \) compensates for that. It is also not difficult to verify that the correct version of \(\text{OPER}(a, b; U, V) \) is performed in this step.

This iteration of the algorithm has two active processors in each cycle of the CCC network. It processes all data-items of the form \(T[a2^r + 2^r - 1] \) and \(T[a2^r + 2^r - 2] \) — a new data-item has entered into the “pipeline” in each cycle of the network. This is what happens for the first \(2^r - 1 \) iterations of the algorithm — new elements enter into the algorithm. At iteration \(2^r - 1 \) — when \(i = 0 \), the first data-items to enter the entire algorithm (namely the ones of the form \(T[a2^r + 2^r - 1] \), for all possible values of \(a \)) are completely processed. We must continue the algorithm for an additional \(2^r \) steps to process the data-items that entered the algorithm late.
The if-statement that imposes the condition \(\max(i, 0) \leq \ell < \min(2^r, 2^r + i) \) controls which processors are allowed to be active in any step.

We have described how to implement the first \(k - r - 1 \) iterations of the DESCEND algorithm. Now we must implement the remaining \(r \) iterations. In these iterations, the pairs of data-items to be processed in each call of OPER\((a, b; U, V)\) both lie in the same loop of the CCC network, so that no lateral moves of data are involved (in the sense of the definition on page 78). Consider the \(i \)th step of the last \(r \) iterations of the DESCEND algorithm. It involves the computation:

\[
\text{if } (\text{bit}_{r-i}(j) = 0 \text{ then }) \text{OPER}(j, r - i; T[j], T[j + 2^{r-i}])
\]

It is completely straightforward to implement this on a linear array of processors (and we can think of the processors within the same cycle of the CCC as a linear array) — we:

1. Move data-item \(T[j + 2^{r-i}] \) to processor \(j \), for all \(j \) with the property that \(\text{bit}_{r-i}(j) = 0 \). This is a parallel data-movement, and moves each selected data-item a distance of \(2^{r-i} \). The execution-time is, thus, proportional to \(2^{r-i} \).
2. For every \(j \) such that \(\text{bit}_{r-i}(j) = 0 \), processor \(j \) now contains \(T[j] \) and \(T[j + 2^{r-i}] \). It is in a position to compute \(\text{OPER}(j, r - i; T[j], T[j + 2^{r-i}]) \). It performs the computation in this step.
3. Now the new values of \(T[j] \) and \(T[j + 2^{r-i}] \) are in processor \(j \). We send \(T[j + 2^{r-i}] \) back to processor \(j + 2^{r-i} \) — this is exactly the reverse of step 1 above. The execution-time is also \(2^{r-i} \).

The total execution-time is thus

\[
T = \sum_{i=0}^{r} 2^{r-i} = 2^{r+1} - 1 = 2(k - r) - 1
\]

We can combine all of this together to get our master DESCEND algorithm for the CCC network:

Algorithm 4.5. If we have an \(n \)-processor CCC network and \(n \) data-items \(T[0], \ldots, T[n - 1] \), where \(T[i] \) is stored in processor \(i \) (in the numbering scheme described above). Recall that \(k = r + 2^r \).

do in parallel (for all processors)

for \(i \leftarrow 2^r - 1 \) **downto** \(-2^r\) **do**

do in parallel (for all processors whose \(\alpha \) coordinate satisfies \(0 \leq \alpha < 2^{k-r} \) and whose \(\ell \)-coordinate satisfies \(\max(i, 0) \leq \ell < \min(2^r, 2^r + i) \))

(if \(\text{bit}_r(\alpha) = 0 \text{ then processor } (\alpha, \ell) \text{ contains } T[\alpha 2^r + \ell] \)

and if \(\text{bit}_r(\alpha) = 1 \text{ then processor } (\alpha, \ell) \text{ contains } T[\alpha 2^r + \ell + 2^{\ell+r}] \)

All processors transmit their value of \(T[\ast] \) along a lateral communication line

Each processor \((\alpha, \ell) \) computes \(\text{OPER}(a, b; U, V) \)

where: \(a = \alpha 2^r + ((i - \ell - 1) \mod 2^r) \)

\(b = \ell + r \)
The corresponding ASCEND algorithm is:

Algorithm 4.6. If we have an n-processor CCC network and n data-items $T[0], \ldots, T[n-1]$, where $T[i]$ is stored in processor i (in the numbering scheme described above).

for $i \leftarrow r$ downto 0 do
 for all processors j such that $bit_i(j) = 1$
 transmit $T[j]$ to processor $j - 2^i$
 endfor
 for all processors j such that $bit_i(j) = 0$
 transmit $T[j + 2^i]$ to processor $j + 2^i$
 endfor
 All processors Compute OPER($i, j; U, V$)
 /* Processors j with $bit_i(j) = 0$ have values of $T[j], T[j + 2^i]$ and processors j with $bit_i(j) = 1$ have values of $T[j], T[j - 2^i]$ so they are able to perform this computation. */
endfor

The “transmit” operations are completely straightforward — they simply involve a sequence of steps in which data is sent to the appropriate neighboring processor.

All processors transmit their value of $T[\,*]$ along a lateral
Each processor \((a, \ell)\) computes \(\text{OPER}(a, b; U, V)\) where:
\[
a = a2^{\ell'} + ((i - \ell - 1 \mod 2^{\ell'})
\]
\[
b = \ell + r
\]
\[
U = T[a2^{\ell'} + \ell]
\]
\[
V = T[a2^{\ell'} + \ell + 2^{\ell'+r}]
\]

F-LOOP

endfor

Although these algorithms look considerably more complex than the corresponding algorithms for the Butterfly and the shuffle-exchange network, their execution-time is comparable.

EXERCISES.

4.1. find an embedding of the CCC-network in a butterfly network that has had its highest and lowest ranks identified (we will call this the m-Butterfly network).

1. Show that the wasteful DESCEND and ASCEND algorithms (4.2 and 4.3 on page 79) of the CCC map into algorithms 3.2 and 3.3 on page 63 for the Butterfly network, under this isomorphism.
2. Map the master DESCEND and ASCEND algorithms for the CCC into an algorithm for the m-Butterfly network under this isomorphism
3. Implement the shift-operation (2.8 on page 60) on the CCC network. Describe all of the data-movements.
4. Implement the Bitonic sort algorithm (originally defined in §3 on page 19) on the CCC network.

5. Dataflow Computers

Recall the definition of computation network in 5.16 on page 42. Dataflow computers represent an interesting approach to parallel computation in which a computation network for a problem is directly implemented by the hardware. The processors of a dataflow computer perform the arithmetic operations of the program and directly correspond to the vertices of the computation network. A program for a dataflow computer consists of a kind of symbolic representation of a computation network.

As one might think, many complex and interesting issues arise in connection with the design of dataflow computers — for instance:

- The architecture must reconfigure itself somehow during execution of a program.
The vertices in the hardware-implemented computation network must perform various auxiliary functions, such as the queuing of data that has been received along input lines before the other data needed to perform a computation. For instance, if a processor is to add two numbers, and one of the numbers has arrived and the other hasn’t, the processor must hold the number that is available and wait for the second number.

There is a great deal of research being conducted on the development of dataflow computers. At M.I.T. a group is working on the Monsoon Project — see [13], by Beckerle, Hicks, Papadopoulos, and Traub. In Japan a group is developing the Sigma-1 computer — see [143] and [142], by Sekiguchi, Hoshino, Yuba, Hiraki, and Shimada.

More recently, the Multicon corporation in Russia has developed a massively parallel dataflow computer with 92000 processors. It fits into a package the size of an IBM PC.

The Granularity Problem

In all of the simulation algorithms described above we assumed that the unbounded parallel computer had an amount of memory that was proportional to the number of processors (this factor of proportionality is the term β that appears so prominently). Suppose we want to simulate an unbounded parallel computer with a large amount of RAM — much larger than the number of processors. Also suppose that the processors in the network used to carry out the simulation together have enough memory between them to accomplish this. We then encounter the so-called Granularity Problem — how is this distributed memory to be efficiently accessed?

This is an interesting problem that has been considered before in the context of distributed databases — suppose a database is broken up into many pieces in distinct computers that are networked together. Suppose people use all of the computers in the network to access the database. Under some (possibly rare) circumstances it is possible that all of the users want data that is be located on the one computer in the network and response time will slow down tremendously because each individual computer in the network can only handle a small number of requests for data at a time. The question arises: Is is possible to organize the data in the database (possibly with multiple copies of data items) so that access to data is always fast regardless of how users request it?

The term granularity comes from the fact that the number of processors is much lower than the amount of memory available so that each processor has a sizable chunk of local memory that must be accessed by all of the other processors. This was an open question until recently. Work of Upfal and Wigderson solved this problem in a very satisfactory way. Although this entire chapter has made references to graphs to some extent (for instance all of the networks we have considered are graphs), the present section will use slightly more graph theory. We will make a few definitions:

Definition 5.1. A graph (or undirected graph) is a pair (V, E), where V is a set of objects called the vertices of the graphs and E is a set of ordered-pairs of vertices, called the edges of the graph. In addition, we will assume the symmetry condition

If a pair $(v_1, v_2) \in E$, then $(v_2, v_1) \in E$ also.

A directed graph (or digraph) is defined like an undirected graph except that the symmetry condition is dropped.
Throughout this section we will assume that our network computer has processors connected in a complete graph. This is a graph in which every vertex is connected to every other vertex. Figure 3.8 shows a complete graph.

If not it turns out that a complete graph network computer can be efficiently simulated by the models presented above.

The main result is the following:

Theorem 5.2. A program step on an EREW computer with n processors and RAM bounded by a polynomial in n can be simulated by a complete graph computer in $O((\log n)(\log \log n)^2)$ steps.

The idea of this result is as follows:

1. Problems occur when many processors try to access the data in a single processor’s local memory. Solve this by keeping many copies of each data item randomly distributed in other processors’ local memory. For the time being ignore the fact that this requires the memory of the whole computer to be increased considerably.

2. When processors want to access local memory of some other processor, let them randomly access one of the many redundant copies of this data, stored in some other processor’s local memory. Since the multiple copies of data items are randomly distributed in other processor’s local memory, and since the processors that read this data access randomly chosen copies of it, chances are that the bottleneck described above won’t occur. Most of the time the many processors that want to access the same local data items will actually access distinct copies of it.

We have, of course, ignored several important issues:

1. If multiple copies of data items are maintained, how do we insure that all copies are current — i.e., some copies may get updated as a result of a calculation and others might not.

2. Won’t total memory have to be increased to an unacceptable degree?

3. The vague probabilistic arguments presented above don’t, in themselves prove anything. How do we really know that the possibility of many processors trying to access the same copy of the same data item can be ignored?
The argument presented above is the basis for a randomized solution to the granularity problem developed by Upfal in [161]. Originally the randomness of the algorithm was due to the fact that the multiple copies of data items were distributed randomly among the other processors. Randomness was needed to guarantee that other processors trying to access the same data item would usually access distinct copies of it. In general, the reasoning went, if the pattern of distributing the copies of data items were regular most of the time the algorithm would work, but under some circumstances the processors might try to access the data in the same pattern in which it was distributed.

Basically, he showed that if only a limited number of copies of each data item are maintained ($\approx \lg n$) conflicts will still occur in accessing the data (i.e. processors will try to access the same copy of the same data item) but will be infrequent enough that the expected access time will not increase unacceptably. The fact that a limited number of copies is used answers the object that the total size of the memory would have to be unacceptably increased. Since this is a randomized algorithm, Upfal rigorously computed the expected execution time and showed that it was $O(\beta \lg^2 n)$ — i.e. that the vague intuitive reasoning used in the discussion following the theorem was essentially correct. The issue of some copies of data getting updated and others being out of date was addressed by maintaining a time stamp on each copy of the data and broadcasting update-information to all copies in a certain way that guaranteed that a certain minimum number of these copies were current at any given time. When a processor accessed a given data item it was required to access several copies of that data item, and this was done in such a way that the processor was guaranteed of getting at least one current copy. After accessing these multiple copies of the data item the processor would then simply use the copy with the latest time stamp.

After this Upfal and Wigderson (in [162]) were able the make the randomized algorithm deterministic. They were able to show that there exist fixed patterns for distributing data among the processors that allow the algorithm to work, even in the worst case. This is the algorithm we will consider in this section.

Let U denote the set of all simulated RAM locations in the EREW computer. The important idea here is that of an organization scheme S. An organization scheme consists of an assignment of sets $\Gamma(u)$ to every $u \in U$ — where $\Gamma(u)$ is the set of processors containing RAM location u — with a protocol for execution of read/write instructions.

We will actually prove the following result:

Theorem 5.3. There exists a constant $b_0 > 1$, such that for every $b \geq b_0$ and c satisfying $b^c \geq m^2$, there exists a consistent scheme with efficiency $O(b[c(\lg c)^2 + \lg n \lg c])$.

1. Note that we get the time estimates in the previous result by setting c proportional to $\lg n$. In fact, c must be $\geq \log_b (m^2) = 2 \log(m)/\log(b)$.
2. Here:

- m is the number of memory locations in the RAM that is being simulated,
- n is the number of processors,
b is a constant parameter that determines how many real memory locations are needed to accomplish the simulation. It must be ≥ 4 but is otherwise arbitrary.

To get some idea of how this works suppose we are trying to simulate a megabyte of RAM on a computer with 1024 processors. Each PE must contain 1024 simulated memory locations following the straightforward algorithm in the previous chapter, and each simulation step might require $1024 \log^2 n$-time. Using the present algorithm, $m = 2^{20}$, $n = 2^{10}$, and execution time is

$$O\left(\frac{40}{\log b} \log^2 \left(\frac{40}{\log b}\right) + 10 \log \left(\frac{40}{\log b}\right)\right)$$

with $40/\log b$-megabytes of real memory needed to simulate the one megabyte of simulated memory. By varying b we determine execution time of the simulation versus amount of real memory needed — where b must be at least 4.

In our scheme every item $u \in U$ will have exactly $2c - 1$ copies. It follows that $\Gamma(u)$ is actually a set of $2c - 1$ values: $\{\gamma_1(u), \ldots, \gamma_{2c-1}(u)\}$. These γ-functions can be regarded as hashing functions, like those used in the sorting algorithm for the hypercube computer. Each copy of a data item is of the form $<$value, time stamp$>$. The protocol for accessing data item u at the t^{th} instruction is as follows:

1. to update u, access any c copies in $\Gamma(u)$, update their values and set their time-stamp to t;
2. to read u access any c copies in $\Gamma(u)$ and use the value of the copy with the latest time-stamp;

The algorithm maintains the following invariant condition:

Every $u \in U$ has at least c copies that agree in value and are time-stamped with the index of the last instruction in which a processor updated u.

This follows from the fact that every two c-subsets of $\Gamma(u)$ have a non-empty intersection (because the size of $\Gamma(u)$ is $2c - 1$).

Processors will help each other to access these data items according to the protocol. It turns out to be efficient if at most $n/(2c - 1)$ data items are processed at a time. We consequently shall partition the set of processors into $k = n/(2c - 1)$ groups, each of size $2c - 1$. There will be $2c$ phases, and in each phase each group will work in parallel to satisfy the request of one of its members. The current distinguished member will broadcast its request (access u_i, or write v_i into u_i) to the other members of its group. Each of them will repeatedly try to access a fixed distinct copy of u_i. After each step the processors in this group will check whether u_i is still alive (i.e., c of its copies haven’t yet been accessed). When c of a given data item’s copies have been accessed the group will stop working on it — the copy with the latest time stamp is computed and sent to P_i.

Each of the first $2c - 1$ phases will have a time limit that may stop processing of the k data items while some are still alive (i.e., haven’t been fully processed). We will show, however, that at most $k/(2c - 1)$ of the original k items will remain. These are distributed, using sorting, one to a group. The last phase (which has no time limit) processes these items.
5.4. Let \(P_{(m-1)(2c-1)+i}, i = 1, \ldots, 2c - 1 \) denote the processors in group \(m, m = 1, \ldots, k, k = n/(2c - 1) \). The structure of the \(j \)th copy of data item \(u \) is
\[
<\text{value}_j(u), \text{time_stamp}_j(u)>
\]

Phase \((i, \text{time_limit}) \):

\[
\{ \\
m \leftarrow \lceil \text{processor}_\# / 2c - 1 \rceil \\
f \leftarrow (m - 1)(2c - 1) \\
P_{f+i} \text{ broadcast its request} \\
\quad \text{(read}(u_{f+i})) \text{ or} \\
\quad \text{update}(u_{f+i}, v_{f+i}) \text{ to} \\
\quad P_{f+1}, \ldots, P_{f+2c-1}; \\
\quad \text{live}(u_{f+i}) \leftarrow \text{true}; \\
\quad \text{count} \leftarrow 0; \\
\quad \text{while live}(u_{f+i}) \text{ and count < time_limit} \text{ do} \\
\quad \quad \text{count} \leftarrow \text{count} + 1; \\
\quad \quad P_{f+i} \text{ tries to access copy}_j(u_{f+i}); \\
\quad \quad \text{if permission_granted} \\
\quad \quad \quad \text{if read_request} \\
\quad \quad \quad \quad \text{read} \langle \text{value}_j(u_{f+i}), \text{time_stamp}_j(u_{f+i}) \rangle \\
\quad \quad \quad \text{else} \\
\quad \quad \quad \quad \text{/*update request */} \\
\quad \quad \quad \quad \langle \text{value}_j(u_{f+i}), \text{time_stamp}_j(u_{f+i}) \rangle \\
\quad \quad \quad \quad = \langle v_{f+i}, k \rangle \\
\quad \quad \quad \quad \text{if < c copies of } u_{f+i} \text{ are still alive} \\
\quad \quad \quad \quad \text{live}(u_{f+i}) \leftarrow \text{false}; \\
\quad \quad \text{endwhile} \\
\quad \quad \text{if read_request then find and send} \\
\quad \quad \quad \text{to } P_{f+i} \text{ the value with the latest time_stamp}; \\
\}
\]

/* phase i;*/

Incidentally, the condition permission_granted refers to the fact that more than one processor may try to access the same copy of a data item in a single step. Only one processor is given permission to perform the access.

ALGORITHM 5.5. Here is the top-level algorithm:

begin
\[
\text{for } i = 1 \text{ to } 2c - 1 \text{ do run phase}(i, \log \eta, 4c); \\
\text{for } a \text{ fixed } h \text{ to be calculated later} \\
\quad \text{sort the } k'2^h \text{ live requests} \\
\quad \text{and route them} \\
\quad \text{to the first processors in the } k' \text{ first groups, one to each processor;} \\
\text{run phase}(1, \lg n); \\
\text{endfor}
\]
end; end algorithm;

Lemma 5.6. If the number of live items at the beginning of a phase is \(w \leq k \) then after the first \(s \) iterations of the while loop at most \(2(1 - 1/b)^s w \) live copies remain.

The significant point here is that the number of live data-items is reduced by a factor. This implies that at most a logarithmic number of iterations are required to reduce the number to zero.

Proof. At the beginning of a phase there are \(w \) live items, and all of their copies are alive so there are a total of \((2c - 1)w\) live copies. By the lemma above after \(s \) iterations the number of live copies is \(2(1 - 1/b)^s(2c - 1)w \). Since \(|\Gamma'(u)| \geq c\) for each live item, these can be the live copies of at most \((1 - 1/b)^s(2c - 1)w/c \leq 2(1 - 1/b)^s w\) live items. \(\square\)

Corollary 5.7. Let \(\eta = (1 - 1/b)^{-1} \):

1. After the first \(\log_\eta(4c - 2) \) iterations of the while loop, at most \(k/(2c - 1) \) live items remain alive (so the last phase has to process at most \(k \) requests);
2. After \(\log_\eta 4c \leq \log_\eta n \) iterations in a phase, no live items remain.

To complete the analysis note that each group needs to perform the following operations during each phase: broadcast, maximum, summation (testing whether \(u_i \) is still alive). Also, before the last phase all the requests that are still alive are sorted.

It remains to give an efficient memory access protocol. In each iteration of the while loop in the algorithm the number of requests sent to each processor is equal to the number of live copies of live data items this processor contains. (Recall that a data item is called live if at least \(c \) copies of it are live.) Since a processor can only process one data item at a time the number of copies processed in an iteration of the while loop is equal to the number of processors that contain live copies of live data items. We will, consequently, attempt to organize memory allocation in such a way as to maximize this number. We will use bipartite graphs to describe this memory allocation scheme.

Definition 5.8. A bipartite graph is a graph with the property that its vertices can be partitioned into two sets in such a way that the endpoints of each edge lie in different sets. Such a graph is denoted \(G(A, B, E) \), where \(A \) and \(B \) are the sets of vertices and \(E \) is the set of edges.

Figure 3.9 shows a bipartite graph.

In our memory allocation scheme \(A \) we will consider bipartite graphs \(G(U, N, E) \), where \(U \) represents the set of \(m \) shared memory items and \(N \) is the set of processors. In this scheme, if \(u \in U \) is a data item then \(\Gamma(u) \) is the set of vertices adjacent to \(u \) in the bipartite graph being used.

Lemma 5.9. For every \(b \geq 4 \), if \(m \leq (b/(2e)^4)^{c/2} \) then there is a way to distribute the \(2c - 1 \) copies of the \(m \) shared data items among the \(n \) processors such that before the start of each iteration of the while loop \(\Gamma \geq A(2c - 1)/b \). Here \(\Gamma \) is the number of processors containing live copies of live data items and \(A \) is the number of live data items.

We give a probabilistic proof of this result. Essentially we will compute the probability that an arbitrary bipartite graph has the required properties. If this probability is greater than 0 there must exist at least one good graph. In fact it
turns out that the probability that a graph is good approaches 1 as \(n \) goes to \(\infty \) — this means that most arbitrary graphs will suit our purposes. Unfortunately, the proof is not constructive. The problem of verifying that a given graph is good turns out to be of exponential complexity.

It turns out that the bipartite graphs we want, are certain expander graphs — see §3.7 in chapter 6 (page 365). It is intriguing to compare the operation we are performing here with the sorting-operation in §3.7.

Proof. Consider the set \(G_{m,n,c} \) of all bipartite graphs \(G(U, N, E) \) with \(|U| = m, |N| = n \), and with the degree of each vertex in \(U \) equal to \(2c - 1 \).

We will say that a graph \(G(U, N, E) \in G_{m,n,c} \) is good if for all possible choices of sets \(\{ \Gamma'(u) : \Gamma'(u) \subseteq \Gamma(u) \} \) for all \(u \in U \) and for all \(S \subseteq U \) such that \(|S| \leq n/(2c-1) \) the inequality \(|\bigcup_{u \in U} \Gamma'(u)| \geq |S|(2c-1)/b \) — here \(S \) represents the set of live data items and \(\bigcup_{u \in U} \Gamma'(u) \) represents the set of processors containing live copies of these data items. We will count the number of bipartite graphs in \(G_{m,n,c} \) that aren’t good or rather compute the probability that a graph isn’t good.

If a graph isn’t good then there exists a choice \(\{ \Gamma'(u) : \Gamma'(u) \subseteq \Gamma(u) \} \) for all \(u \in U \) and a set \(S \subseteq U \) such that \(|S| \leq n/(2c-1) \) and \(|\Gamma'(u)| < |S|(2c-1)/b \).

\(\mathbb{P} \left[G \in G_{m,n,c} \text{ is not good} \right] \leq \sum_{g \leq n} \binom{m}{g} \binom{n}{g} \frac{(2c-1)^g}{c} \left(\frac{g(2c-1)/b}{n} \right)^{gc} \)

Here \(g \) is the size of the set \(S \) and \(g(2c-1)/b \) is the size of \(|\bigcup_{u \in U} \Gamma'(u)| \). The formula has the following explanation:

1. the fourth factor is the probability that an edge coming out of a fixed set \(S \) will hit a fixed set \(|\bigcup_{u \in U} \Gamma'(u)| \) — the exponent \(qc \) is the probability that all of the edges coming out of all of the elements of \(S \) will have their other end in \(|\bigcup_{u \in U} \Gamma'(u)| \). The idea is that we imagine the graph \(G \) as varying and this results in variations in the ends to the edges coming out of vertices of \(S \).
2. the first factor is the number of ways of filling out the set S to get the m vertices of the graph;
3. the second factor is the number of ways of filling out the set $\bigcup_{u \in U} \Gamma'(u)$, whose size is $< |S|/(2c-1)/b \leq q(2c-1)/b$ to get the n processor-vertices of the graph;
4. the third factor is the number of ways of adding edges to the graph to get the original graph in $G_{m,n,c}$ — we are choosing the edges that were deleted to get the subgraph connecting S with $\Gamma'(u)$.

This can be approximately evaluated using Stirling’s Formula, which states that $n!$ is asymptotically proportional to $n^{n-\frac{1}{2}}e^{-n}$. We want to get an estimate that is \geq the original.

Definition 5.10.

$$\left(\frac{m}{q}\right) = \frac{m!}{q!(m-q)!}$$

We will use the estimate

$$\left(\frac{m}{q}\right) \leq m^q q^{-q+1/2} e^d$$

Claim: Formula (2) asymptotically behaves like $o(1/n)$ as $n \to \infty$, for $b \geq 4$ and $m \leq \left(\frac{b}{(2e)^4}\right)^{1/4}$. Since the formula increases with increasing m we will assume m has its maximal allowable value of $(b/(2e)^4)^{c/2}$. This implies that the first term is $\leq (b/(2e)^4)^{c/2} g^q q^{-g+1/2} e^g = b^{c/2} 2^{-2g} e^{g - 2g - g + 1/2}$. Now the third term is $(2e - 1)/c! (c - 1)!/s$, which can be estimated by $(2e - 1)^{2c - 1.5} / c^{c - 5} (c - 1)^{c - 1.5})/s$, and this is

$$\leq (2e)^{2c - 1.5} / c^{c - 5} (c - 1)^{c - 1.5}) s = (2e - 1)^{2c - 1.5} / c^{c - 2} e^{c - 2} s_k = (2c - 1)^{2c - 1.5} / c^{c - 3} s \leq c^{5g/2} e^g$$

The product of the first and the third terms is therefore

$$\leq b^{c/2} 2^{-2g} e^{g - 2g - g + 1/2} c^{5g/2} e^g$$

Now the second term is

$$\leq n^{g(2c-1)/b} (g(2c - 1)/b)^{-g(2c-1)/b + 1/2} e^{g(2c-1)/b}$$

$$\leq n^{c/2} (g(2c - 1)/b)^{-g(2c-1)/b + 1/2} e^{c/2}$$

— here we have replaced $g(2c-1)/b$ first by $g(2c-1)/4$ (since we are only trying to get an upper bound for the term and 4 is the smallest allowable value for b), and then by $gc/2$. We can continue this process with the term raised to the $1/2$ power to get

$$n^{gc/2} (g(2c - 1)/b)^{-g(2c-1)/b} (gc/2)^{1/2} e^{gc/2}$$

$$= n^{gc/2} (g(2c - 1))^1 (g(2c-1)/b) b^{gc/2} (gc/2)^{1/2} e^{gc/2}$$

$$= n^{gc/2} (g(2c - 1))^1 (g(2c-1)/b) b^{gc/2} (gc/2)^{1/2} e^{gc/2}$$
The product of the first three terms is
\[\frac{bgc}{2} \cdot e^{-2gc} \cdot g^{-8+1/2} \cdot c^{g/2} \cdot n^{gc/2} \left(g(2c-1) \right)^{-1/2} \left(g(2c-1)/b \right)^1 \left(g(2c-1)/n \right)^{gc/2} \]
\[= b^{-8c} \cdot e^{-3gc/2} \cdot g^{-8+1/2} \cdot c^{g+1/2} \cdot n^{gc/2} \left(g(2c-1) \right)^{-1/2} \left(g(2c-1)/b \right)^{gc} \]

The product of all four terms is
\[b^{-8c} \cdot e^{-3gc/2} \cdot g^{-8+1/2} \cdot c^{g+1/2} \cdot n^{gc/2} \left(g(2c-1) \right)^{-1/2} \left(g(2c-1)/b \right)^{gc} \]
\[= e^{g^{-8c/2}} \cdot g^{-8+1/2} \cdot c^{g+1/2} \cdot n^{gc/2} \left(g(2c-1) \right)^{-1/2} \left(g(2c-1)/b \right)^{gc} \]

Now note that the exponential term (on the left) dominates all of the polynomial terms so the expression is \(\leq g^{-8c} \cdot e^{g^{-8c/2}} \cdot n^{gc/2} \left(g(2c-1) \right)^{-1/2} \left(g(2c-1)/b \right)^{gc} \cdot \left(g(2c-1)/n \right)^{gc} \). In the sum the first term is \(cn^{-c/2} \cdot (2c-1)^c \cdot (2c-1)/b \). This dominates the series because the factors of \(g^{-8} \) and \((g(2c-1))^{k^{-1/2} \cdot (2c-1)/b} \) overwhelm the factors \(c^{g+1/2} \cdot n^{gc/2} \) — the last factor is bounded by 1.

Exercises.

5.1. The algorithm for the Granularity Problem requires the underlying network to be a complete graph. Can this algorithm be implemented on other types of networks? What would have to be changed?

5.2. Program the algorithm for the granularity problem in Butterfly Pascal.
Examples of Existing Parallel Computers

1. Asynchronous Parallel Programming

In this section we will consider software for asynchronous parallel programs. These are usually run on MIMD computers with relatively few processors, although it is possible to develop such programs for networks of sequential computers. Many of the important concepts were first discussed in § 5.6.1 in chapter 2.

We begin by discussing a number of portable programming packages.

1.1. Portable Programming Packages.

1.1.1. Linda. In this section we will discuss a general programming system that has been implemented on many different parallel computers. Our main emphasis will be on the LINDA package. It is widely available and striking in its simplicity and elegance. The original system, called LINDA, was developed by Scientific Computing Associates and they have ported it to many platforms — see [141]. Linda is particularly interesting because it is available on parallel computers and on sets of networked uni-processor machines. The network version of LINDA effectively converts networked uni-processor machines into a kind of MIMD-parallel computer. It consists of:

- A set of commands that can be issued from a C or Pascal program.
- A preprocessor that scans the source program (with the embedded LINDA commands) and replaces them by calls to LINDA functions.

In order to describe the commands, we must first mention the LINDA concept of tuple space. Essentially, LINDA stores all data that is to be used by several processes in table created and maintained by LINDA itself, called tuple space. User-defined processes issue LINDA commands to put data into, or to take data out of tuple space. In particular, they are completely unable to share memory explicitly. LINDA controls access to tuple space in such a way that race-conditions are impossible — for instance the program on page 48 can’t be written in LINDA\(^1\).

A *tuple* is an ordered sequence of typed values like:

\[(1,zz,"cat",37)\]

or

\[(1,3.5e27)\]

An *anti* tuple is similar to a tuple, except that some of its entries are written as variable-names preceded by \(?\). Example:

\(^1\)So LINDA is not a suitable system to use in the beginning of a course on concurrent programming!
A tuple is said to match an anti-tuple if they both have the same number of entries, and all of the quantities in the anti-tuple are exactly equal to the corresponding quantities in the tuple. For instance:

\[(1,?x,?y,37)\]
matches
\[(1,17,"cat",37)\]
but doesn’t match
\[(1,17,37)\]
(wrong number of entries) or
\[(2,17,"cat",37)\]
(first entries don’t agree).

The LINDA system defines the following operations upon tuples:

1. **out**(*tuple*). This inserts the tuple that appears as a parameter into tuple space. Example:

   ```
   out(1,zz,"cat",37)
   ```

 Suppose \(t\) and \(a\) are, respectively, a tuple and an anti-tuple. The operation of unifying \(t\) with \(a\) is defined to consist of assigning to every element of the anti-tuple that is preceded by a \(?\), the corresponding value in the tuple. After these assignments are made, the anti-tuple and the tuple are identical.

2. **in**(*anti-tuple*) This attempts to find an actual tuple in tuple-space that matches the given anti-tuple. If no such matching tuple exists, the process that called **in** is suspended until a matching tuple appears in tuple space (as a result of another process doing an **out** operation). If a match is found
 a. the matching tuple is atomically removed from tuple-space
 b. the anti-tuple is unified with the matching tuple. This results in the assignment of values to variables in the anti-tuple that has been preceded by a \(?\).

 The **in** statement represents the primary method of receiving data from other processes in a system that employs LINDA. Here is an example: We have a process that has a variable defined in it named \(zz\). The statement:
   ```
   in(1,zz)
   ```
 tests whether a tuple exists of the form \((1,x)\) in tuple-space. If none exists, then the calling process is blocked. If such a tuple is found then it is atomically removed from tuple-space (in other words, if several processes “simultaneously” attempt such an operation, only one of them succeeds) and the assignment \(zz\leftarrow x\) is made.

3. **eval**(*special-tuple*) Here *special-tuple* is a kind of tuple that contains one or more function-calls. LINDA created separate processes for these function-calls. This is the primary way to create processes in the LINDA system. Example:
   ```
   eval(compeq(pid))
   ```

4. **rd**(*anti-tuple*) Similar to **in**(*anti-tuple*), but it doesn’t remove the matching tuple from tuple-space.
5. **inp**(anti-tuple) Similar to **in**(anti-tuple), but it doesn’t suspend the calling process if no matching tuple is found. It simply returns a boolean value (an integer equal to 1 or 0) depending on whether a matching tuple was found.

6. **rdp**(anti-tuple) Similar to **inp**(anti-tuple), but it doesn’t remove a matching tuple from tuple-space.

Although LINDA is very simple and elegant, it has the unfortunate shortcoming that is lacks anything analogous to semaphore **sets** as defined on page 53.

Here is a sample LINDA program that implements the generic DESCEND algorithm (see 2.1 on page 58):

```c
#define TRUE 1
#define K /* the power of 2 defining the size of the * input—data. */
#define N /* 2^K*/
int bit_test[K];
real_main(argc, argv) /* The main program in LINDA must be called * 'real_main' —— the LINDA system has its own * main program that calls this. */
int argc;
char **argv;
{
    struct DATA_ITEM {* declaration */}

    struct DATA_ITEM T[N];
    int i,k;
    for (i=0; i<N; ++i) out(T[i],i,K); /* Place the data into * tuple—space */
    for (i=0; i<K; i++) bit_test[i]=1<<i; /* Initialize bit_test array. */
    for (k=0; k<K, k++)
        for (i=0; i<N; ++i) eval(worker(i,k)); /* Start processes */
}

void worker(x,k)
int x,k;
{
    int k;
    struct DATA_ITEM data1,data2;
    if ((bit_test[k]&x) == 0) then
    {
        in(?data1.x,k);
        in(?data2.x+bit_test[k].k);
        OPER(x,k,&data1,&data2);
        out(data1.x,k-1);
        out(data2.x+bit_test[k].k-1);
    }
```
In this program, we are assuming that the procedure OPER(x,k,*data1,*data2);
is declared like:

```c
void OPER(x,k,p1,p2);
int x,k;
struct DATA_ITEM *p1, *p2;
```

and is defined to perform the computations of \(\text{OPER}(m,j,T[m],T[m+2]) \).

This program is not necessarily practical:

1. The time required to start a process or even to carry out the \text{in} and \text{out} operations may exceed the time required to simply execute the algorithm sequentially.
2. Only half of the processes that are created ever execute.

Nevertheless, this illustrates the simplicity of using the parallel programming constructs provided by the LINDA system. Substantial improvements in the speed of LINDA (or even a hardware implementation) would negate these two objections.

In addition, a practical algorithm can be developed that is based upon the one presented above — it would have each process do much more work in executing the DESCEND algorithm so that the time required for the real computations would dominate the overall computing time. For instance we can have each worker routine perform the \(\text{OPER}(m,j,T[m],T[m+2]) \) computation for \(G \) different values of \(m \) rather than just 1. Suppose:

\[
p_t = \text{Time required to create a process with } \text{eval}.
\]
\[
i_t = \text{Time required to } \text{in} \text{ a tuple}.
\]
\[
o_t = \text{Time required to } \text{out} \text{ a tuple}.
\]
\[
r_t = \text{Time required to perform } \text{OPER}(m,j,T[m],T[m+2])
\]

Then the time required to perform the whole algorithm, when each worker procedure works on \(G \) distinct rows of the T-array is approximately:

\[
nkp_t/G + k(i_t + o_t) + kGr_t
\]

Here, we are assuming that, if each worker process handles \(G \) different sets of data, we can get away with creating \(1/G \) of the processes we would have had to otherwise. We are also assuming that the times listed above dominate all of the execution-time — i.e., the time required to increment counters, perform if-statements, etc., is negligible. The overall execution time is a minimum when the derivative of this with respect to \(G \) is zero or:

\[
-nkp_t/G^2 + kr_t = 0
\]
\[
nkp_t = G^2 kr_t
\]
\[
G = \sqrt{\frac{np_t}{r_t}}
\]

The resulting execution-time is

\[
nkp_t/G + k(i_t + o_t) + kGr_t = \frac{nkp_t}{\sqrt{np_tr_t}} + k\sqrt{np_tr_t} + k(i_t + o_t)
\]
\[
= k\sqrt{np_tr_t} + k\sqrt{np_tr_t} + k(i_t + o_t)
\]
\[
= k (2\sqrt{np_tr_t} + i_t + o_t)
\]
One good feature of the LINDA system is that it facilitates the implementation of calibrated-algorithms, as described in 5.25 on page 54.

Algorithm 1.1. Suppose we have a calibrated algorithm for performing computation on an EREW-SIMD computer. Then we can implement this algorithm on a MIMD computer in LINDA as follows:

1. Create a LINDA process for each processor in the SIMD algorithm (using `eval`).
2. Add all input-data for the SIMD algorithm to the tuple-space via `out`-statements of the form
   ```
   out(addr,0,data);
   ```
 where `addr` is the address of the data (in the SIMD-computer), `0` represents the 0th time step, and the data is the data to be stored in this memory location (in the SIMD-computer). In general, the middle entry in the `out`-statement is a *time-stamp*.
3. In program step \(i \), in LINDA process \(p \) (which is simulating a processor in the SIMD computer) we want to read a data-item from address \(a \). The fact that the algorithm was calibrated implies that we know that this data-item was written in program-step \(i' = f(i,a,p) \), where \(i' < i \), and we perform
   ```
   rd(a,i',data);
   ```
4. In program step \(i \), in LINDA process \(p \), we want to store a data-item. We perform
   ```
   out(a,i,data);
   ```

1.1.2. **p4.** P4 is a portable system developed at Argonne National Laboratories for parallel programming. It is designed to be used with FORTRAN and C and consists of a library of routines that implement

- Monitors — these are synchronization primitives that can be used as semaphores and barriers, and more general things.
- Shared memory.
- Message-passing.

Its user interface is not as elegant as that of Linda, but it essentially gives the user similar functionality. It is free software, available via anonymous ftp to ????????

1.1.3. **MPI.** The acronym “MPI” stands for “Message Passing Interface” and represents a standard for message passing. It was developed by a consortium of hardware manufacturers — who have agreed to develop optimized versions of MPI on their respective platforms. Consequently, a software developer can assume that an efficient version of MPI exists (or will eventually exist) on a given platform and develop software accordingly.

It consists of a library of routines, callable from Fortran or C programs that implement asynchronous message passing. Its functionality is a subset of that of Linda or P4, and its user-interface is rather ugly\(^2\), but it is the only standard\(^3\).

There is a portable (and free) implementation of MPI developed jointly by people at

\(^2\)This is a highly subjective term, but represents the author’s reaction to a library of routines with large numbers of parameters, most of which aren’t used in any but marginal situations.

\(^3\)As of this writing — May 21, 1994
4. EXAMPLES OF EXISTING PARALLEL COMPUTERS

- Argonne National Labs — Rusty Lusk, Bill Gropp;
- Mississippi State University — Tony Skjellum and Nathan Doss;
- IBM Corporation — Hubertus Franke.

This implementation interfaces to the FORTRAN and C languages and runs on the following platforms:

- Networked Sun workstations and servers;
- RS6000’s;
- the IBM SP-1 — see page 16;
- Intel iPSC — see page 71;
- the Intel Paragon — see page 16;

The sample implementation isn’t as efficient as it might be — it gains its portability by using an Abstract Device Interface to related it to peculiarities of the hardware. It can use any one of three such systems: Chameleon, p4, Chimp, or PVM. It is available via anonymous ftp from info.mcs.anl.gov in directory pub/mpi.

1.2. Automatically Parallelizing Compilers. This has always been an important topic because:

- Some people find parallel programming hard and want a way to automate the process. Furthermore, expertise in parallel programming isn’t as widely available as expertise in sequential programming.
- The fastest numerical compute-engines these days are parallel, but there are millions of lines of old sequential code lying around, and people don’t want to expend the effort to re-write this stuff from scratch.

Theoretically speaking automatic parallelization is essentially impossible. This is to say that getting an optimal parallel algorithm from a given sequential algorithm is probably recursively uncomputable. There are sub-problems of this general problem that are known to be NP-complete. For instance, an optimal parallel algorithm would require optimal assignment of processors to perform portions of a sequential algorithm. This is essentially equivalent to the optimal register assignment problem, which is NP-complete (see [57]).

One of the problems is that optimal parallel algorithms are frequently very different from optimal sequential algorithms — the problem of matrix inversion is a striking example of this. The optimal sequential algorithm is Gaussian elimination, which is known to be P-complete (see page 41, and [165]). The optimal (as of May 21, 1994) parallel algorithm for this problem involves plugging the matrix into a power series — a technique that would lead to an extraordinarily inefficient sequential algorithm (see page 165).

Having said all of this there is still some motivation for attempting to develop automatically parallelizing compilers.

2. Discussion and further reading

p4 is a successor to the set of parallel programming macros described in the book [20].

Linda was developed by David Gelernter, who works as a consultant to S. C. A. For an interesting discussion of the history of Linda see [111] — this article also explains the name “Linda”.
3. SIMD Programming: the Connection Machine

3.1. Generalities. In this section we will consider the Connection Machine manufactured by Thinking Machines Corporation. Aside from the inherent interest in this particular piece of hardware, it will be instructive to see how a number of important issues in the theory of parallel algorithms are addressed in this system.

We first consider some general features of the architecture of this system. The computer (model CM-2) is physically implemented as a 12-dimensional hypercube, each node of which has 16 processors. This is a SIMD machine in which programs are stored on a front end computer. The front end is a conventional computer that is hard-wired into the Connection Machine. As of this writing (March, 1990) the types of machines that can be front end for the Connection Machine are: DEC VAX's; Symbolics Lisp machines; Sun machines. In a manner of speaking the Connection Machine may be viewed as a kind of coprocessor (!) for the front end — even though its raw computational power is usually many thousands of times that of the front end. The front end essentially “feeds” the Connection Machine its program, one instruction at a time. Strictly speaking, it broadcasts the instructions to all of the processors of the Connection Machine though the hardware connection between them. Each processor executes the instructions, using data from:

1. the front end (which acts like common RAM shared by all processors)
2. its own local RAM (8K);
3. local RAM of other processors.

The first operation is relatively slow if many processors try to access distinct data items from the front end at the same time — the front end can, however, broadcast data to all processors very fast. This turns out to mean that it is advantageous to store data that must be the same for all processors, in the front end. Copying of data between processors (statement 3 above) follows two basic patterns:

1. Grid communication This makes use of the fact that the processors in the machine can be organized (at run-time) into arrays with rapid communication between neighboring processors. Under these conditions, the Connection Machine behaves like a mesh-connected computer. Grid communication is the fastest form of communication between processors.
2. General communication This uses an algorithm somewhat like the randomized sorting algorithm of Valiant and Brebner (see [164] and §3.2 in chapter 2 of this book). This sorting algorithm is used when data must be moved between distinct nodes of the 12-dimensional hypercube (recall that each node has 16 processors). The sorting algorithm is built into hardware and essentially transparent to the user. Movement of data between processors is slower than access of local memory, or receiving broadcast data from the front end. Since this data movement uses a randomized algorithm, the time it takes varies — but is usually reasonably fast. In this case the Connection Machine can be viewed as a P-RAM machine, or unbounded parallel computer.

You can think of the memory as being organized into hierarchies:

- local memory — this is memory contained in the individual processors. This memory can be accessed very rapidly, in parallel.
• front-end — this is memory contained in the front-end computer, that also contains the program for the connection machine. This memory can also be accessed rapidly, but only a limited amount of parallelism can be used.

The front-end computer can
- read data from a single individual processor in the Connection Machine, in one program-step;
- perform a census-operation on all active processors. See § 3.2 on page 103 for a discussion of census-operations.
- “broadcast” data from the front-end to all of the processors in a single program-step. This is a fast operation, since it uses the same mechanism used for broadcasting the instructions to the Connection Machine.

• non-local — here processors access local memory of other processors. This is a parallel memory access that is somewhat slower than the other two operations. It still uses a single program-step — program steps on the Connection Machine do not all use the same amount of time.

This division into hierarchies turns out to fit in well with programming practices used in high-level programming languages, since modular programs make use of local memory in procedures — and this turns out to be local memory of processors.

I/O can be performed by the front-end, or the Connection Machine itself. The latter form of I/O make use of a special piece of hardware called a Data Vault — essentially disk drives with a high data rate (40 megabytes/second).

The Connection Machine is supplied with several programming languages, including:

Paris essentially the assembly language of the Connection Machine (it stands for Parallel Instruction Set). It is meant to be used in conjunction with a high-level language that runs on the front-end computer. This is usually C. You would, for instance, write a C program that contained Paris instructions embedded in it.

*Lisp this is a version of Common Lisp with parallel programming features added to it. These extra commands are in a close correspondence with PARIS instructions — causing *Lisp to be regarded as a “low-level” language (!). There is also a form of lisp called CM-Lisp that is somewhat higher-level than *Lisp.

CM-Fortran this is a version of Fortran with parallel programming primitives.

C* This language is essentially a superset of ANSI C. We will focus on this language in some detail. Since it is fairly typical of a language used on SIMD machines we will use it as a kind of pseudocode for presenting parallel algorithms in the sequel. There are two completely different versions of this language. The old versions (< 6.0) were very elegant but also inefficient to the point of being essentially unusable. The new versions (with version-numbers ≥ 6.0) are lower-level languages that are very powerful and efficient — they rival C/Paris in these respects. We will focus on this language in the remainder of this chapter.

4 As this statement implies, these two versions have almost nothing in common but the name, C*, and the fact that they are loosely based on C.
3.2. Algorithm-Design Considerations. In many respects designing algorithms for the Connection Machine is like designing algorithms for a PRAM computer. The processors have their own local RAM, and they don’t share it with other processors (at least in a straightforward way), but modular programming techniques make direct sharing of memory unnecessary in most circumstances.

One important difference between the Connection Machine and a PRAM machine is that two operations have different relative timings:

- **Census** operations take constant time on a Connection Machines and \(O(\lg n)\)-time on a PRAM computer. Census operations are operations that involving accumulating data over all of the active processors. “Accumulating data” could amount to:
 1. taking a (sum, product, logical OR, etc.) of data items over all active processors.
 2. counting the number of active processors.

On a PRAM computer, census operations are implemented via an algorithm like the one on page 58 or in §1 of chapter 6. Although the computations are not faster on the Connection Machine, the census operations are effectively built into the hardware, the time spent doing them is essentially incorporated into the machine cycles.

- Parallel data movement-operations require unit-time on a PRAM computer, but may require longer on a Connection Machine. Certain basic movement-operations are built into the hardware and require unit time, but general operations\(^5\) can require much longer. See section 3.4.8 for more details.

3.3. The C* Programming Language. In addition to the usual constructs of ANSI C, it also has ways of describing code to be executed in parallel. Before one can execute parallel code, it is necessary to describe the layout of the processing elements. This is done via the `shape` command. It allocates processors in an array and assigns a name to the set of processors allocated. All code to be executed on these processors must contain a reference to the name that was assigned. We illustrate these ideas with a sample program — it implements the parallel algorithm for forming cumulative sums of integers:

```c
#include <stdio.h>
#define MACHINE_SIZE 8192
shape [MACHINE_SIZE]sum;
int:sum n; /* each processor will hold an integer value */
int:sum PE_number; /* processors must determine their identity. */
int:current lower(int);
void add(int);
int:current lower (int iteration)
{
    int next_iter=iteration+1;
    int:current PE_num_reduced = (PE_number >>
    next_iter)<<next_iter;
}
```

\(^5\)Such as a parallel movement of data form processor \(i\) to processor \(\sigma(i)\), with \(\sigma\) an arbitrary permutation
return PE_num_reduced + (1 << iteration) - 1;
}

void add(int iteration)
{
 where (lower(iteration) < PE_number)
 n += lower(iteration) * n;
}

void main() /* code not prefaced by a shape name
is executed sequentially on the front end. */
{
 int i;
 with (sum) PE_number = pcoord(0);
 printf("Enter 8 numbers to be added in parallel:
");
 for (i = 0; i < 8; i++)
 {
 int temp;
 scanf("%d", &temp);
 [i]n = temp;
 }
 for (i = 0; i < 2; i++)
 with (sum) add(i);
 /* the call to add is executed in parallel
by all processors in the shape named sum*/
 printf("The cumulative sums are:
");
 for (i = 0; i < 8; i++)
 printf("Processor %d, value =%d
", [i]PE_number, [i]n);
}

(See algorithm 1.4 on page 268 for an explanation of what this program does.)
The first aspect of this program that strikes the reader is the statement: shape
[MACHINE_SIZE]sum. This allocates an array of processors (called a shape) of
size equal to MACHINE_SIZE and assigns the name sum to it. Our array was one-
dimensional, but you can allocate an array of processors with up to 32 dimen-
sions. The dimension is actually significant in that transmission of data to neigh-
boring processors can be done faster than to random processors. This language
construct mirrors the fact that the hardware of the Connection Machine can be dy-
namically reconfigured into arrays of processors. Of course transmission of data
between processors can also be done at random (so that the Connection Machine
can be viewed as a CREW computer) — this motion is optimized for certain con-
figurations of processors. If you are writing a program in which the data move-
ment doesn’t fit into any obvious array-pattern it is usually best to simply use
a one-dimensional array and do random-access data movement (data-movement
commands can contain subscripts to denote target-processors).

6Currently, (i.e., as of release 6.0 of C*) each dimension of a shape must be a power of 2 and the
total number of processors allocated must be a power of 2 times the number of processors physically
present in the machine.
All statements that use this array of processors must be within the scope of a statement `with(sum)`.

The statement `int:sum n;` allocates an integer variable in each processor of the shape sum. Note that the shape name follows the data type and that they are separated by a colon. In C* there are two basic classes of data: scalar and parallel. Scalar data is allocated on the front-end computer in the usual fashion (for the C-language), and parallel data is allocated on the processors of the Connection Machine.

You may have noticed the declaration: `int:current lower(int);` and wonder where the shape `current` was declared. This is an example of a pre-defined and reserved shape name. Another such predefined name is `physical` — it represents all processors physically present on a given Connection Machine. The word `current` simply represents all currently-active processors. The fact that the procedure `lower` has such a shape declaration in it implies that it is parallel code to be executed on the processors of the Connection Machine, rather than the front end. The word `current` is a kind of generic term for a shape that can be used to declare a procedure to be parallel.

Note that the parameter to this procedure has no shape declaration — this means it represents scalar data allocated on the front end computer and broadcast to the set of active processors whenever it is needed. Note that the procedure allocates data on the front end and on the processors — the second allocation is done via `int:current PE_num_reduced...`.

Consider the next procedure:

```c
void add(int iteration)
{
    where (lower(iteration)<PE_number)
        n+=[lower(iteration)]n;
}
```

This block of code is executed sequentially on the front end computer. On the other hand, it calls parallel code in the `where`-statement. A `where` statement evaluates a logical condition on the set of active processors and executes its consequent on the processors that satisfy the test. In a manner of speaking, it represents a parallel-if statement.

Now we look at the main program. It is also executed on the front end. The first unusual piece of code to catch the eye is:

```c
with (sum) PE_number = pcoord(0);
```

At most one shape can be active at any given time. When a shape is activated all processors in the shape become active and parallel code can be executed on them. Note that `where` and `with`-statements can be nested.

Nested `where` statements simply decrease the number of active processors — each successive `where`-statement is executed on the processors that remained active from the previous `where` statements. This is a block structured statement in the sense that, when the program exits from the `where` statement the context that
existed prior to it is restored. In other words, when one leaves a *where* block, all processors that were turned off by the logical condition are turned back on.

Nested *with* statements simply change the current shape (and *restore* the previously active shape when the program leaves the inner *with* statement).

Note the expression `pcoord(0)`. This is a predefined parallel procedure (i.e. it runs on all active processors) that returns the coordinate of a processor in a given shape-array. These coordinates are numbered from 0 so the only coordinate that exists in a one-dimensional array like `sum` is the 0th. This statement assigned a unique number (in parallel) to each processor in the shape `sum`. Here is a list of the pre-defined functions that can be used to access shapes:

1. `pcoord(number)` — defined above.
2. `rankof(shape)` — returns the *rank* of the given shape — this is the number of dimensions defined for it. Example: `rankof(sum)` is equal to 1.
3. `positions(shape)` — returns the total number of positions of a given shape — essentially the number of processors allocated to it. `positions(shape)` is 8192.
4. `dimof(shape, number)` — returns the range of a given dimension of a shape.

Next, we examine the code:

```c
for (i=0;i<8;i++)
{
    int temp;
    scanf("%d", &temp);
    [i]n=temp;
}
```

This reads 8 numbers typed in by the user and stores them into 8 processors. The `scanf` procedure is the standard C-procedure so that it reads data into the *front-end* computer. We read the data into a temporary variable names `temp` and then assign it into the variable `n` declared in the processors of `sum`. Note the statement `[i]n=temp;` — this illustrates how one refers to data in parallel processors. The data `temp` is assigned to the `i`th copy of `n`. Such statements can be used *in* parallel code as well — this is how one does *random access* data movement on a Connection Machine. With a multi-dimension shape of processor, each subscript is enclosed in its own pair of square brackets: `[2][3][1]z`.

There is also a special notation for referencing neighboring processors in a *shape*. Suppose `p` is a parallel variable in a one-dimensional shape. Then the notation `[pcoord(0)+1]p` refers to the value of `p` in the *next-higher* entry in this shape. The statement

```c
[pcoord(0)+1]p=p;
```

sends data in each processor in this shape to the next higher processor in the shape — in other words it does a *shift operation*. The statement

```c
with (this,shape)
    z=[pcoord(0)+1][pcoord(1)-1]z;
```
does a two-dimensional shift operation.

In such cases, there is a shorthand for referring to the current position or current value of some index in a shape — this is the dot notation. The expression `pcord(i)`, where i is the current index, is represented by a dot. The data-movements described above can be replaced by:

`[+1]p=p;`

and

```
with (this_shape) z=[+1][−1]z;
```

The next sample program illustrates the use of a two-dimensional shape. It implements the Levialdi Counting Algorithm, discussed in the Introduction. First, it generates a random array of pixels using the `rand` function. Then it implements the Levialdi algorithm and reports on the number of connected components found.

```c
#include <stdio.h>
#include <stdlib.h>
shape [64][128]pix; /* image, represented as an array of pixels */
ext:pix val, nval; /* 1 or 0, representing on or off pixel */
ext total = 0; /* total number of clusters found */
int current h(int current);
int:pix h(int:pix);
void update();
int isolated();
void print_array();
void main()
{
    int i, j, on_pixels; /* number of 1 pixels in image */
    unsigned int seed; /* seed value passed to random number generator */
    int density; /* density (% of 1's) in original image */
    printf("Enter density and seed: ");
    scanf("%d %u", &density, &seed);
    srand(seed);
    for (i = 0; i < 64; i++)
        for (j = 0; j < 64; j++)
            [i][j] val = ((i == 0) || (i >= 63) ||
                (j == 0) || (j >= 63)) ? 0 :
                    (rand() % 100 < density);
```
printf("array Initialized\n");
printf("array
");

on_pixels = 1;
i = 0;
with(pix)
while (on_pixels > 0) {
 int t = 0;
 update();
i++;
t += val;
if (i < 2)
 print_array();
on_pixels = t;
printf("Iteration %.3d -- %.4d pixels on, %.3d clusters found\n", i, on_pixels, total);
}
printf("Final tally: %d clusters found \n", total);

int: current h(int: current x)
{
 return (x >= 1);
}
void update()
{
 total += isolated();
 where((pcoord(0) > 0)
 & (pcoord(0) < 63)
 & (pcoord(1) > 0)
 & (pcoord(1) < 63)) {
 val = h(h([.][. − 1] val
 + [.][.] val
 + [. + 1][.] val − 1)
 + h([.]][. val
 + [. + 1][. − 1] val − 1));
 }
}
int isolated()
{
 int t = 0;
 int: current iso;
 iso = (val == 1)
 & ([. − 1][.] val == 0)
 & ([. + 1][.] val == 0)
 & ([.][. − 1] val == 0)
 & ([.][. + 1] val == 0)
 & ([. − 1][. − 1] val == 0)
& ([. + 1][. + 1] val == 0);
& ([. + 1][. + 1] val == 0);
& ([. + 1][. + 1] val == 0);
t += iso;
return t;
}

3.3.1. Running a C* program. To run a C* program:
1. Give it a name of the form 'name.cs';
2. Compile it via a command of the form:
cs name.cs
 there are a number of options that can be supplied to the compiler. These closely correspond to the options for the ordinary C compiler. If no option regarding the name of the output file is supplied, the default name is 'a.out' (as with ordinary C).
3. Execute it via a command:
a.out
 This attaches to the Connection Machine, and executes a.out.

3.4. Semantics of C*.
3.4.1. Shapes and parallel allocation of data. We will begin this section by discussing the precise meaning of the with statement and its effects on where statements. As has been said before, the with statement determines the current shape. In general, the current shape determines which data can actively participate in computations. This rule has the following exceptions:
1. You can declare a parallel variable that is not of the current shape. This variables cannot be initialized, since that would involve its participation in active computations.
2. A parallel variable that is not of the current shape can be operated upon if it is left-indexed by a scalar or scalars — since the result of left-indexing such a parallel variable is effectively a scalar. In other words, you can execute statements like [2][3]z=2; even though z is not of the current shape.
3. The result of left-indexing a variable not of the current shape by a parallel variable that is of the current shape is regarded as being of the current shape. In other words, the following code is valid:

```c
shape [128][64]s1;
```
4. Examples of existing parallel computers

```c
shape [8192]s2;
int:s2 a,b;
int:s1 z;
with (s2) [a][b]z=2;
```

since the expression [a][b]z is regarded as being of the shape s2. This is essentially due to the fact that the set of values it takes on are indexed by the shape s2 — since a and b are indexed by s1.

4. It is possible to apply `dimof` and `shapeof` and the address-of operator, `&`, to a parallel variable that is not of the current shape. This is due to the fact that these are implemented by the compiler, and don't involve actual parallel computations.

5. You can right-index a parallel array that is not of the current shape with a scalar expression.

6. You can use the “dot” operator to select a field of a parallel structure or union that is not of the current shape — provided that field is not another structure, union, or array.

3.4.2. Action of the `with`-statement. The `with`-statement activates a given shape and makes it the current shape. The concept of current shape is central to the C* language. In order to understand it, we must consider the problem of describing SIMD code. Since each processor executes the same instruction, it suffices to describe what one processor is doing in each program step. We consider a single generic processor and its actions. This generic processor will be called the current processor. The term “current processor” does not mean that only one processor is “current” at any given time — it merely selects one processor out of all of the processors and uses it as an example of how the parallel program executes on all of the processors.

The current shape defines:

- how the current processor is accessed in program-code. If the current shape is k dimensional, the current processor is a member of a k-dimensional array.
- the functions `pcoord(i)`.

The next example illustrates how variables that are not of the current shape can be accessed in parallel code. This code-fragment will multiply a vector v by a matrix A:

```c
shape [64][128]twodim;
shape [8192]onedim;
int:twodim A;
int:onedim v,prod;
void main()
{
    with(onedim) prod=0; /* Zero out the v−vector. */
    with(twodim) /* Make the shape 'twodim' current. */
    {
        [pcoord(0)]prod+=A*[pcoord(1)]v;
        /* This code accesses 'prod' and 'v', in
```
* spite of the fact that they are not of the current shape. The fact that 'twodim' is the current shape defines the 'pcoord(0)' 'pcoord(1)' */

} The use of the shape twodim is not essential here — it merely makes it more convenient to code the array-access of A. We could have written the code above without using this shape. The processors in the shape twodim are the same processors as those in the shape onedim (not simply the same number of processors). Here is a version of the code-fragment above that only uses the onedim-shape:

```c
shape [64][128]twodim;
shape [8192]onedim;
int:twodim A;
int:onedim v,prod;
void main()
{
    with(onedim) prod=0; /* Zero out the v—vector. */
    with(onedim) /* Continue to use the shape 'onedim'. */
    {
        [pcoord(0)/128]prod+=[pcoord(0)/128][pcoord(0) % 128]A*v;
    }
}
```

Here, we use the expression `[pcoord(0)/128][pcoord(0) % 128]A` to refer to elements of A. We assume that the shape twodim is numbered in a row-major format.

The second code-fragment carries out the same activity as the first. The use of the shape twodim is not entirely essential, but ensures:

- The code-fragment
  ```c
  [pcoord(0)]prod+=A*[pcoord(1)]v;
  ```
 is simpler, and
- It executes faster — this is due to features of the hardware of the Connection Machine. Shapes are implemented in hardware and a with-statement has a direct influence on the Paris code that is generated by the C* compiler.

3.4.3. Action of the where-statement. There are several important considerations involving the execution of the where-statement. In computations that take place within the scope of a where-statement, the active processors that are subject to the conditions in the where-statement are the ones whose coordinates are exactly equal to `{pcoord(0),...,pcoord(n))}. This may seem to be obvious, but has some interesting consequences that are not apparent at first glance. For instance, in the code:

```c
shape [8192]s;
int:s z;
where(z > 2) [.+2]z=z;
```
a processor \([i+2]z\) will receive the value of \([i]z\) if that value is \(> 2\) — the original value of \([i+2]z\) (and, therefore, the whether processor number \(i + 2\) was active) is irrelevant. Processor \([.+2]\) in this statements is simply a passive receiver of data — it doesn’t have to be active to receive the data from processor \([.]z\). On the other hand, processor \([.]\) must be active in order to send the data.

Suppose the processors had \(z\)-values given by:

\[
\begin{align*}
[0]z &= 1; \\
[1]z &= 3; \\
[2]z &= 3; \\
[3]z &= 0; \\
[4]z &= 1; \\
[5]z &= 4; \\
[6]z &= 2; \\
[7]z &= 0;
\end{align*}
\]

then the code fragment given above will result in the processors having the values:

\[
\begin{align*}
[0]z &= 1; \\
[1]z &= 3; \\
[2]z &= 3; \\
[3]z &= 3; \\
[4]z &= 3; \\
[5]z &= 4; \\
[6]z &= 2; \\
[7]z &= 4;
\end{align*}
\]

When processors are inactive in a where-statement they mark time in a certain sense — they execute the code in a manner that causes no changes in data in their memory or registers. They can be passive receivers of data from other processors, however.

Other processors can also read data from an inactive processor’s local memory. For instance the effect of the where statement:

\[
\text{where}(z > 2)
\]
\[
z = [. - 1]z;
\]

is to cause the original data in the parallel variable \(z\) to be transformed into:

\[
\begin{align*}
[0]z &= 1; \\
[1]z &= 1; \\
[2]z &= 3; \\
[3]z &= 0; \\
[4]z &= 1; \\
[5]z &= 1; \\
[6]z &= 2;
\end{align*}
\]
In order to understand more complex code like

```c
where(cond)
[.+3]z=[.+2]z;
```

it is necessary to pretend the existence of a new variable `temp` in active processors:

```c
where(cond)
{
  int shapeof(z) temp;
  temp=[.+2]z;
  [.+3]z=temp;
}
```

A given data-movement will take place if and only if the condition in `cond` is satisfied in the current processor. In this case both `[.+2]z` and `[.+3]z` play a passive role — the processor associated with one is a storage location for parallel data and the other is a passive receiver for parallel data.

These `where`-statements can be coupled with an optional `else` clause. The `else`-clause that follows a `where`-statement is executed on the complement of the set of processors that were active in the `where`-statement.

```c
where (c) s1;
else s2;
```

Statement `s2` is executed on all processors that do not satisfy the condition `c`.

There is also the `everywhere`-statement, that explicitly turns on all of the processors of the current shape.

Ordinary arithmetic operations and assignments in C* have essentially the same significance as in C except when scalar and parallel variables are combined in the same statement. In this case the following two rules are applied:

1. **Replication Rule**: A scalar value is automatically replicated where necessary to form a parallel value. This means that in a mixed expression like:

   ```c
   int a;
   int:someshape b,c;
   b=a+c;
   ```

 the value of `a` is converted into a parallel variable before it is substituted into the expression. This means it is broadcast from the front-end computer.

 This is also used in the Levialdi Counting Program in several places — for instance:

   ```c
   int:current h(int:current x)
   ```
2. **As-If-Serial Rule:** A parallel operator is executed for all active processors as if in some serial order. This means that in an expression:

```c
int a;
int: someshape b;
a = b;
```

a will get the value of one of the copies of b — *which* one cannot be determined before execution. Code like the following:

```c
int a;
int: someshape b;
a += b;
```

will assign to a the sum of all the values of b. This is accomplished via an efficient parallel algorithm (implemented at a low-level) like that used to add numbers in the sample program given above. Note that the basic computations given in the sample program were unnecessary, in the light of this rule — the main computation could simply have been written as

```c
int total;
with(sum) total += n;
```

This is used in several places in the Levialdi Counting Program:

```c
with(pix)
while (on_pixels > 0) {
    int t = 0;
    update();
i++;
t += val;
if (i < 2)
    print_array();
on_pixels = t;
printf("Iteration %.3d -- %.4d pixels on, %.3d clusters found\n", i, on_pixels, total);
}
```

3.4.4. **Parallel Types and Procedures.** 1. **Scalar data.** This is declared exactly as in ANSI C.

2. **Shapes** Here is an example:

```c
shape descriptor shapename;
```
where descriptor is a list of 0 or more symbols like \([\text{number}]\) specifying the size of each dimension of the array of processors. If no descriptor is given, the shape is regarded as having been only partially specified – its specification must be completed (as described below) before it can be used.

When shapes are defined in a procedure, they are dynamically allocated on entry to the procedure and de-allocated on exit. Shapes can also be explicitly dynamically allocated and freed. This is done with the allocate_shape command. This is a procedure whose:

1. first parameter is a pointer to the shape being created;
2. second parameter is the rank of the shape (the number of dimensions);
3. the remaining parameters are the size of each dimension of the shape.

For instance, the shape sum in the first sample program could have been dynamically allocated via the code:

```
shape sum;
sum = allocate_shape(&sum, 1, 8192);
```

The shape pix in the Levialdi Counting Program could have been created by:

```
shape pix;
pix = allocate_shape(&pix, 2, 64, 128);
```

Shapes can be explicitly deallocated by calling the function deallocate_shape and passing a pointer to the shape. Example: deallocate_shape(&pix);. You have to include the header file `<stdlib.h>` when you use this function (you do not need this header file to use allocate_shape).

3. Parallel data Here is a typical parallel type declaration:
 typename:shapename variable;

4. Scalar pointer to a shape In C*, shapes can be regarded as data items and it is possible to declare a scalar pointer to a shape. Example:
   ```
   shape *a;
   ```
 Having done this we can make an assignment like
   ```
a=&sum;
```
 and execute code like
   ```
   with(*a)...
   ```
 A function related to this is the shapeof-function. It takes a parallel variable as its parameter and returns the shape of the parameter.

5. Scalar pointers to parallel data. Sample:
   ```
   typename:shapename *variable;
   ```
 Here variable becomes a pointer to all instances of a given type of parallel data. It becomes possible to write
   ```
   [3]*variable.data
   ```
Typecasting can be done with parallel data in C*. For example, it is possible to write\(a=(\text{int:sum})b\).

6. type procedure_name (type1 par1, type2 par2,

...,typen parn);

Note that the preferred syntax of C* looks a little like Pascal. All procedures are supposed to be declared (or prototyped), as well as being defined (i.e. coded). The declaration of the procedure above would be:

7. type procedure_name (type1, type2,

...,typen);

— in other words, you list the type of data returned by the procedure, the name of the procedure, and the types of the parameters. This is a rule that is not strictly enforced by present-day C*, but may be in the future. Example:

\[\text{int:sum lower (int iteration) / * DEFINITION of 'lower' procedure */}
\]
\[
\{ \\
\text{int next iter=iteration+1; } \\
\text{int:sum PE_num_reduced = (PE_number >> } \\
\text{next iter)<<next iter; } \\
\text{return PE_num_reduced + (1<<iteration) - 1; }
\}
\]
\[\text{void add(int iteration) / * DEFINITION of 'add' procedure */}
\]
\[
\{ \\
\text{where (lower(iteration)<PE_number) } \\
\text{n+=PE[lower(iteration)].n; }
\}
\]

In the remainder of this discussion of C* we will always follow the preferred syntax.

8. Overloaded function-definitions. In C* it is possible to define scalar and parallel versions of the same function or procedure. In other words, one can declare procedures with the same name with with different data types for the parameters. It is possible to have different versions of a procedure for different shapes of input parameters. This is already done with many of the standard C functions. For instance, it is clear the the standard library \texttt{<math.h>} couldn’t be used in the usual way for parallel data: the standard functions only compute single values. On the other hand, one can code C* programs as if many of these functions existed. The C* compiler automatically resolves these function-calls in the proper way when parallel variables are supplied as parameters. In fact, many of these function-calls are implemented on the Connection Machine as \textit{machine language} instructions, so the C* compiler simply generates the appropriate assembly language (actually, PARIS) instructions to perform these computations.

In order to overload a function you must use its name in an overload-statement. This must be followed by the declarations of all of the versions of the function, and the definitions of these versions (i.e., the actual code).
3. SIMD PROGRAMMING: THE CONNECTION MACHINE

3.4.5. **Special Parallel Operators.** The following special operators are defined in C* for doing parallel computations:

- `<?=` Sets the target to the **minimum** of the values of the parallel variable on the right;
- `>?=` Sets the target to the **maximum** of the values of the parallel variable on the right;
- `?=` Sets the target to an **arbitrary selection** of the values of the parallel variable on the right.
- `<` This is a function of two variables (scalar or parallel) that returns the minimum of the variables.
- `>` This is a function of two variables (scalar or parallel) that returns the maximum of the variables.
- `?:` This is very much like the standard C operator-version of the if-statement. It is coded as `(var?stmt1:stmt2)`. If `var` is a scalar variable it behaves exactly like the corresponding C statement. If `var` is a parallel variable it behaves like: `where(var) stmt1; else stmt2;`

C* also defines a new data type: **bool**. This can be used for flags and is advantageous, since it is implemented as a single bit and the Connection Machine can access single bits.

3.4.6. **Sample programs.** We begin with sample programs to compute Julia sets and the Mandelbrot set. These are important fractal sets used in many areas of pure and applied mathematics and computer science including data compression and image processing. Computing these sets requires an enormous amount of CPU activity and lends itself to parallelization. We begin by quickly defining these sets. These computations are interesting in that they require essentially no communication between processors.

Let \(p \in \mathbb{C} \) be some complex number. The Julia set with parameter \(p \) is defined to be the set of points \(z \in \mathbb{C} \) with the property that the sequence of points \(z_i \) remains bounded. Here \(z_0 = z \) and for all \(i \), \(z_{i+1} = z_i^2 + p \). Note that if \(z \) starts out sufficiently large, \(||z_i|| \to \infty \) as \(i \to \infty \) since the numbers are being squared each time. In our program we will calculate \(z_{100} \) for each initial value of \(z \) and reject initial values of \(z \) that give a value of \(z_{100} \) whose absolute value is \(> 5 \) since adding \(p \) to such a number doesn’t have a chance of canceling it out\(^7\). We will assign a different processor to each point that is tested. Here is the program:

```c
#include <stdio.h>
shape[64][128] plane;
float:plane r, c, r1, c1, x, y, mag;
int:plane injulia, row, column;
void main() {
    float p_r = 0.0, p_c = 0.0;
    int i, j;
    with(plane) {
        r = pcoord(0); /* Determine row of processor. */
```

\(^7\) This is not obvious, incidentally. It turns out that the values of \(p \) that produce a nonempty Julia set have an absolute value \(< 2\).
4. EXAMPLES OF EXISTING PARALLEL COMPUTERS

c = pcoord(1); /* Determine column of processor. */
x = r / 16.0 - 2.0; /* Determine x-coordinate
* (real part of point that
* this processor will
* handle. We subtract 2.0
* so that x-coordinates will
* range from -2 to +2. */
y = c / 32.0 - 2.0; /* Determine y-coordinate
* (complex part of point
* that this processor will
* handle. We subtract 2.0
* so that y-coordinates will
* range from -2 to +2. */
r = x;
c = y;
injulia = 1; /* Initially assume that all points
* are in the Julia set. */
mag = 0.; /* Initially set the absolute value
* of the z(i)'s to 0. We will
* calculate these absolute values
* and reject all points for which
* they get too large. */
}
printf("Enter real part of par:\n");
scanf("%g", &p_r);
printf("Enter complex part of par:\n");
scanf("%g", &p_c);
/* Compute the first 100 z's for each point of the selected
* region of the complex plane. */

for (i = 0; i < 100; i++) {
 with(plane) {
 /* We only work with points still thought to
* be in the Julia set. */
 where(injulia == 1) {
 r1 = r * r - c * c + p_r;
c1 = 2.0 * r * c + p_c;
r = r1;
c = c1;
mag = (r * r + c * c);
/*
* This is the square of the absolute
* value of the point.
*/
 }
 }
}
where(mag > 5.0) injulia = 0;

/*
* Eliminate these points as candidates for
* membership in the Julia set.
*/
}
}

/* Now we print out the array of 0’s and 1’s for half of the
* plane in question. A more serious program for computing a
* Julia set might work with more data points and display the
* set in a graphic image, rather than simply printing out a
* boolean array.
*/

for (i = 0; i < 64; i++) {
 for (j = 0; j < 64; j++)
 printf("%d", [i][j] injulia);
 printf("\n");
}

Mandelbrot sets are very similar to Julia sets, except that, in computing z_{i+1} from z_i, we add the original value of z instead of a fixed parameter p. In fact, it is not hard to see that a given point is in the Mandelbrot set if and only if the Julia set generated using this point as its parameter is nonempty. This only requires a minor change in the program:

```c
#include <stdio.h>
shape [64][128]plane;
float:plane r, c, r1, c1, x, y, mag;
int:lane inmand, row, column;
void main() {
    int i, j;
    with(plane) {
        r = pcoord(0); /* Determine row of processor. */
        c = pcoord(1); /* Determine column of processor. */
        x = r / 16.0 - 2.0; /* Determine x-coordinate
* (real part of point that
* this processor will
* handle. We subtract 2.0
* so that x-coordinates will
* range from -2 to +2. */
        y = c / 32.0 - 2.0; /* Determine y-coordinate
* (complex part of point
* that this processor will
* handle. We subtract 2.0
* so that y-coordinates will
```
range from -2 to $+2$. */
r = x;
c = y;
inmand = 1; /* Initially assume that all points
* are in the Mandelbrot set. */
mag = 0.; /* Initially set the absolute value
* of the $z(i)$'s to 0. We will
* calculate these absolute values
* and reject all points for which
* they get too large. */
}
/*
* Compute the first 100 z's for each point of the selected
* region of the complex plane.
*/
for (i = 0; i < 100; i++) {
 with(plane) {
 /*
 * We only work with points still thought to
 * be in the Mandelbrot set.
 */
 where(inmand == 1) {
 rl = r * r - c * c + x;
c1 = 2.0 * r * c + y;
r = rl;
c = c1;
mag = (r * r + c * c);
 /*
 * This is the square of the absolute
 * value of the point.
 */
 }
 where(mag > 5.0) inmand = 0;
 /*
 * Eliminate these points as candidates for
 * membership in the Mandelbrot set.
 */
 }
 /*
 * Now we print out the array of 0's and 1's for half of the
 * plane in question. A more serious program for computing a
 * Mandelbrot set might work with more data points and
 * display the set in a graphic image, rather than simply
 * printing out a boolean array.
 */
 for (i = 0; i < 64; i++) {
 for (j = 0; j < 64; j++)
3. SIMD PROGRAMMING: THE CONNECTION MACHINE

3.4.7. Pointers. In this section we will discuss the use of pointers in C*. As was mentioned above, C* contains all of the usual types of C-pointers. In addition, we have:

- scalar pointers to shapes;
- scalar pointers to parallel variables.

It is interesting that there is no simple way to have a parallel pointer to a parallel variable. Although the CM-2 Connection Machine has indirect addressing, the manner in which floating point data is processed requires that indirect addressing be done in a rather restrictive and non-intuitive way. The designer of the current version of C* has simply opted not to implement this in C*. It can be done in PARIS (the assembly language), but it is not straightforward (although it is fast). We can “fake” parallel pointers to parallel variables by making the arrays into arrays of processors — i.e., storing individual elements in separate processors. It is easy and straightforward to refer to sets of processors via parallel variables. The disadvantage is that this is slower than true indirect addressing (which only involves the local memory of individual processors).

A scalar pointer to a shape can be coded as:

```c
shape *ptr;
```

This can be accessed as one might expect:

```c
with(*ptr)...
```

As mentioned before, shapes can be dynamically allocated via the `allocate_shape` command. In order to use this command, the user needs to include the file `<stdlib.h>`.

`allocate_shape` is a procedure whose:

1. first parameter is a pointer to the shape being created;
2. second parameter is the rank of the shape (the number of dimensions);
3. the remaining parameters are the size of each dimension of the shape.

The shape `pix` in the Levialdi Counting Program could have been created by:

```c
shape pix;
pix=allocate_shape(&pix,2,64,128);
```

Dynamically allocated shapes can be freed via the `deallocate_shape` command.

Scalar pointers to parallel variables point to all instances of these variables in their respective shape. For instance, if we write:

```c
shape [8192];
int:s a;
int:s *b;
b=&a;
```

8 The address must be “shuffled” in a certain way
causes a and *b to refer to the same parallel data-item. Parallel data can be dynamically allocated via the \texttt{palloc} function. In order to use it one must include the file \texttt{<stdlib.h>}. The parameters to this function are:

1. The shape in which the parallel variable lives;
2. The size of the parallel data item in \texttt{bits}. This is computed via the \texttt{boolsizeof} function.

Example:

\begin{verbatim}
#include <stdlib.h>
shape [8192]s;
int *p;
p=palloc(s, boolsizeof(int:s));
\end{verbatim}

Dynamically allocated parallel variables can be freed via the \texttt{pfree} function. This only takes one parameter — the pointer to the parallel data-item.

3.4.8. Subtleties of Communication. A number of topics were glossed over in the preceding sections, in an effort to present a simple account of C*. We will discuss these topics here. The alert reader may have had a few questions, about communication:

- How are general and grid-based communications handled in C* — assuming that one has the ability to program these things in C*?
- Although statements like \texttt{a+=b}, in which \texttt{a} is scalar and \texttt{b} is parallel, adds up values of \texttt{b} into \texttt{a}, how is this accomplished if \texttt{a} is a \texttt{parallel} variable? A number of algorithms (e.g., matrix multiplication) will require this capability.
- How is data passed between different shapes?

The C* language was designed with the idea of providing all of the capability of assembly language in a higher-level language (like the C language, originally) and addresses all of these topics.

We first note that the \texttt{default} forms of communication (implied whenever one uses left-indexing of processors) is:

1. \texttt{general} communication, if the left-indexing involves data-items or numbers;
2. \texttt{grid communication}, if the left-indexing involves \texttt{dot notation} with fixed displacements. This means the numbers added to the dots in the left-indexes are the same for all processors. For instance \texttt{a=[+1][-1]a}; satisfies this condition. In addition, the use of the \texttt{pcoord} function to compute index-values results in grid communication, if the displacements are the same for all processors. For instance, the compiler is smart enough to determine that

\begin{verbatim}
a=[pcoord(0)+1][pcoord(1)-1]a;
\end{verbatim}

involves grid communication, but

\begin{verbatim}
a=[pcoord(1)+1][pcoord(0)-1]a;
\end{verbatim}

does not, since the data movement is different for different processors.
Even in general communication, there are some interesting distinctions to be made. Suppose \(a \) is some parallel data-item. We will call the following code-fragment

\[
a = [2]a
\]

a parallel get statement, and the following

\[
[7]a = a
\]

a parallel send statement. In the first case data enters the current processor from some other processor, and in the second, data from the current processor is plugged into another processor.

It turns out that send operations are twice as fast as the parallel get operations. Essentially, in a get operation, the current processor has to send a message to the other processor requesting that it send the data.

It is also important to be aware of the distinction between get and send operations when determining the effect of inactive processors. The get and send operations are only carried out by the active processors. Consider the code:

```c
shape [8192]s;
int:s dest,source;
int index=4;
where(source < 30)
dest = [index]source;
```

here, the processors carrying out the action are those of \(dest \) — they are getting data from \(source \). It follows that this code executes by testing the value of \(source \) in every processor, then plugging \([4]source\) into \(dest \) in processors in which \(source \) is < 30. In code like

```c
shape [8192]s;
int:s dest,source;
int index=4;
where(source < 30)
[.+1]source = source;
```

the processors in \([.+1]source\) are passive receivers of data. Even when they are inactive, data will be sent to them by the next lower numbered processor unless that processor is also inactive.

3.4.9. Collisions. In PARIS, there are commands for data-movement on the Connection Machine that resolve collisions of data in various ways. The \(C^* \) compiler is smart enough to generate appropriate code for handling these collisions in many situations — in other words the compiler can determine the programmer's intent and generate the proper PARIS instructions.

1. if the data movement involves a simple assignment and there are collisions, a random instance of the colliding data is selected;
2. if a reduction-assignment operation is used for the assignment, the appropriate operation is carried out. Table 4.1 lists the valid reduction-assignment operations in \(C^* \).
4. EXAMPLES OF EXISTING PARALLEL COMPUTERS

<table>
<thead>
<tr>
<th>Operation</th>
<th>Effect</th>
<th>Value if no active processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>+=</td>
<td>Sum</td>
<td>0</td>
</tr>
<tr>
<td>-=</td>
<td>Negative sum</td>
<td>0</td>
</tr>
<tr>
<td>^=</td>
<td>Exclusive OR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>OR</td>
</tr>
<tr>
<td><?=</td>
<td>MIN</td>
<td>Maximum possible value</td>
</tr>
<tr>
<td>>?=</td>
<td>MAX</td>
<td>Minimum possible value</td>
</tr>
</tbody>
</table>

TABLE 4.1.

These reduction-operations are carried out using an efficient algorithm like the algorithm for adding 8 numbers on page 58. Reduction-operations take $O(\lg n)$-time to operate on n numbers. See §1 chapter 6 for more information on the algorithm used.

These considerations are essential in programming some kinds of algorithms. For instance, matrix multiplication (at least when one uses the $O(\lg n)$ time algorithm) requires the use of reduction operations:

```c
#include <stdio.h>
#include <stdlib.h>

shape [64][128]mats;
void matmpy(int, int, int, int current*, int current*, int current*);
/* Function prototype. */

/* This is a routine for multiplying an m x n matrix (*mat1) by an n x k matrix (*mat2)
 to get an m x k matrix (*outmat)
 */
void matmpy(int m, int n, int k,
 int current*mat1,
 int current*mat2,
 int current*outmat)
{
    shape [32][32][32]tempsh; /* A temporary shape used
 * to hold intermediate
 * results — products
 * that are combined
 * in the reduction
 * operations.
 */
    int tempsh tempv;
    *outmat = 0;
    with(tempsh)
    {
        bool tempsh region = (pcoord(0) < m) &
            (pcoord(1) < n)
        & (pcoord(2) < k);
    }
```
/* This is the most efficient
* way to structure a where
* statement with complex
* conditions.
*/

where(region) {
 tempv = [pcoord(0)][pcoord(1)] (*mat1) *
 [pcoord(1)][pcoord(2)] (*mat2);
 [pcoord(0)][pcoord(2)] (*outmat) += tempv;
 /* Parallel reduction operations here ——
 via the ‘+=’—operation. */
}
}

void main() {
 int n = 3;
 int m = 3;
 int k = 3;
 int mats a, b, c;
 int i, j;
 with(mats) {
 a = 0;
 b = 0;
 c = 0;
 /* Test data. */
 [0][0]a = 1;
 [0][1]a = 2;
 [0][2]a = 3;
 [1][0]a = 4;
 [1][1]a = 5;
 [1][2]a = 6;
 [2][0]a = 7;
 [2][1]a = 8;
 [2][2]a = 9;
 b = a;
 matmpy(3, 3, 3, &a, &b, &c);
 for (i = 0; i < n; i++)
 for (j = 0; j < k; j++)
 printf("%d\n", [i][j]c);
 }
}

Note that the matrices are passed to the procedure as pointers to parallel integers. The use of pointers (or pass-by-value) is generally the most efficient way to pass parallel data. C programmers may briefly wonder why it is necessary to take pointers at all — in C matrices are normally stored as pointers to the first element. The answer is that these “arrays” are not arrays in the usual sense (as
regarded by the C programming language. They are *parallel integers* — the *indexing* of these elements is done by the parallel programming constructs of C* rather than the array-constructs of the C programming language. In other words these are regarded as *integers* rather than *arrays* of integers. They store the same kind of information as an array of integers because they are *parallel* integers.

Note the size of the shape \[\text{shape} \{32\times32\times32\}\text{tempsh};\] — this is the fundamental limitation of the \(O(\lg n)\)-time algorithm for matrix multiplication. A more practical program would dynamically allocate `tempsh` to have dimensions that approximate \(n, m, \text{ and } k\) if possible. Such a program would also switch to a slower algorithm that didn’t require as many processors if \(n \times m \times k\) was much larger than the available number of processors. For instance, it is possible to simply compute the \(m \times k\) elements of \(*\text{outmat}\) in parallel — this is an \(O(m)\)-time algorithm that requires \(m \times k\) processors.

Exercises.

3.1. How would the CM-2 be classified, according to the Handler scheme described on page 16?

3.2. Write the type of program for matrix multiplication described above. It should dynamically allocate (and free) `tempsh` to make its dimensions approximate \(n, m, \text{ and } k\) (recall that each dimension of a shape must be a power of 2), and switch to a slower algorithm if the number of processors required is too great.

3.3. Suppose we want to program a parallel algorithm that does *nested parallelism*. In other words it has statements like:

\[
\begin{align*}
\text{for } i = 1 \text{ to } k \text{ do in parallel} \\
& \text{int } t; \\
& \text{for } j = 1 \text{ to } \ell \text{ do in parallel} \\
& \quad t \leftarrow \min\{j | A[i,j] = 2\}
\end{align*}
\]

How do we implement this in C*?

3.5. **A Critique of C*. In this section we will discuss some of the good and bad features of the C* language. Much of this material is taken from [66], by Hatcher, Philippsen, and Tichy.

We do this for several reasons:

- Analysis of these features shows how the hardware influences the design of the software.
- This type of analysis is important in pointing the way to the development of newer parallel programming languages.
The development of parallel languages cannot proceed in a purely abstract fashion. Some of the issues discussed here were not known until the C* language was actually developed.

If one knows PARIS (the “assembly language” of the CM-1 and 2), the first flaw of C* that comes to mind is the fact that most PARIS instructions are not implemented in C*. This is probably due to the fact that people working with the Connection Machine originally programmed mostly in PARIS. There was the general belief that one had to do so in order to get good performance out of the machine. The designers of C* may have been felt that the people who wanted to extract maximal performance from the CM-series by using some of the more obscure PARIS instructions, would simply program in PARIS from the beginning. Consequently, they may have felt that there was no compelling reason to implement these instructions in C*. This position is also amplified by the fact that PARIS is a very large assembly language that is generally more “user-friendly” than many other assembly languages — in other words, PARIS was designed with the idea that “ordinary users” might program in it (rather than just system programmers).

We have already seen the problem of parallel pointers and indirect addresses — see §3.4.7 on page 121. This limitation was originally due to certain limitations in the CM-2 hardware. In spite of the hardware limitations, the C* language could have provided parallel pointers — it would have been possible to implement in software, but wasn’t a high enough priority.

The use of left indices for parallel variables is a non-orthogonal feature of C*. Parallel scalar variables are logically arrays of data. The only difference between these arrays and right-indexed arrays is that the data-items are stored in separate processors. Since the left-indexed data is often accessed and handled in the same way as right-indexed arrays, we should be able to use the same notation for them. In other words, the criticism is that C* requires us to be more aware of the hardware (i.e. which array-elements are in separate processors) than the logic of a problem requires. The issue is further confused slightly by the fact that the CM-1 and 2 frequently allocate virtual processors. This means that our knowledge of how data-items are distributed among the processors (as indicated by the left-indices) is frequently an illusion in any case.

In [66] Hatcher, Philippsen, and Tichy argue that the statements for declaring data in C* are non-orthogonal. They point out that type of a data-item should determine the kinds of operations that can be performed upon it — and that C* mixes the concepts of data-type and array size. In C* the shape of a parallel variable is regarded as an aspect of its data-type, where it is really just a kind of array declaration. For instance, in Pascal (or C) one first declares a data-type, and then can declare an array of data of that type. The authors mentioned above insist that these are two logically independent operations that C* forces a user to combine. Again the C* semantics are clearly dictated by the hardware, but Hatcher, Philippsen, and Tichy point out that a high-level language should insulate the user from the hardware as much as possible.

In the same vein Hatcher, Philippsen, and Tichy argue that C* requires users to declare the same procedure in more different ways than are logically necessary. For instance, if we have a procedure for performing a simple computation on an integer (say) and we want to execute this procedure in parallel, we must define a

9 Some people might disagree with this statement!
version of the procedure that takes a parallel variable as its parameter. This also results in logical inconsistency in parallel computations.

For instance, suppose we have a procedure for computing absolute value of an integer \(\text{abs()} \). In order to compute absolute values in parallel we must define a version of this procedure that takes a suitable parallel integer as its parameter:

\[
\text{int:current abs(int:current);}
\]

Now suppose we use this procedure in a parallel block of code:

\[
\text{int:someshape c,d; where(somecondition) \{ int:someshape a; a=c+d; e=abs(a); \}}
\]

Now we examine how this code executes. The add-operation \(a=c+d \) is performed in parallel, upon parallel data. When the code reaches the statement \(e=\text{abs}(a) \), the code logically becomes sequential. That is, it performs a single function-call with a single data-item (albeit, a parallel one). Hatcher, Philippson, and Tichy argue that it should be possible to simply have a single definition of the \text{abs}-function for scalar variables, and have that function executed in parallel upon all of the components of the parallel variables involved. They argue that this would be logically more consistent than what C* does, because the semantics of the \text{abs}-function would be the same as for addition-operations.

In defense of C*, one should keep in mind that it is based upon C, and the C programming language is somewhat lower-level than languages like Pascal or Lisp. One could argue that it is better than working in PARIS, and one shouldn’t expect to be completely insulated from the hardware in a language based upon C.

An international group of researchers have developed a programming language that attempts to correct these perceived shortcomings of C* — see [70], [69], and [71]. This language is based upon Modula-2, and is called Modula*. We discuss this language in the next section.

4. Programming a MIMD-SIMD Hybrid Computer: Modula*

4.1. Introduction. In this section we will discuss a new parallel programming language based upon Modula-2 in somewhat the same way that C* was based upon the C programming language.

The semantics of this language are somewhat simpler and clearer than C*, and it is well-suited to both SIMD and MIMD parallel programming. This language has been developed in conjunction with a MIMD-SIMD hybrid computer — the Triton system, being developed at the University of Karlsruhe. They have implemented Modula* on the CM-2 Connection Machine, and the MasPar MP-1, and

\[10\] It is sometimes called “high-level assembly language”.

4. PROGRAMMING A MIMD-SIMD HYBRID COMPUTER: MODULA* 129

intend to implement it upon their MIMD-SIMD hybrid computer, the Triton/1, when it is complete. The discussion in this section follows the treatment of Modula* in [70], by Christian Herter and Walter Tichy.

4.2. Data declaration.
4.2.1. Elementary data types. The elementary data-types of Modula* are the same as those of Modula-2. They closely resemble basic data-types in Pascal. The most striking difference (at first glance) is that the language is case-sensitive and all keywords are capitalized. We have:

- **INTEGER**
- **CARDINAL**. These are unsigned integers.
- **CHAR**. Character data.
- **BOOLEAN**. Boolean data.
- **REAL**. Floating point data.
- **SIGNAL**. This is a special data-type used for synchronizing processes. A SIGNAL is essentially a semaphore. These data-items are used in Modula* somewhat more than in Modula-2, since this is the main synchronization primitive for asynchronous parallel processes.

4.2.2. Parallel data types. Unlike C*, Modula* has no special parallel data type. Parallel data is indistinguishable from array data, except that one can specify certain aspects of parallel allocation.

In Modula-2 array-types are defined with statements like:

```
ARRAY RangeDescriptor OF type;
```

Here RangeDescriptor describes the range of subscript-values, and type is the data-type of the elements of the array. Example:

```
VAR x:ARRAY [1..10] OF INTEGER;
```

This is very much like Pascal, except that keywords must be capitalized. This construct is generalized to higher dimensions in a way reminiscent of C:

```
VAR y:ARRAY [1..10], [-3..27] OF INTEGER;
```

In Modula*, arrays declared this way will be parallel, by default. If we want to control how this allocation is done, Modula* allows an optional additional parameter, called the allocator that follows the RangeDescriptor for each dimension:

```
ARRAY RangeDescriptor [allocator] OF type;
```

If an allocator is missing it is assumed to be the same as the next allocator to its right. The possible values for this allocator are:

1. **SPREAD**. This is the default allocator. It means that values of the array are allocated in ranges of consecutive values in the separate processors. This means that if we want to allocate \(n \) array elements among \(p \) processors, segments of size \(\lceil n/p \rceil \) are allocated to each processor. This allocator guarantees that array elements with consecutive subscript-values are allocated, as much as possible, to the same processors. In a one-dimensional array (from 0 to \(n - 1 \), say), element \(i \) is stored in location \(i \mod p \) in processor \([i/p] \).
2. **CYCLE.** This allocator assigns elements of the array in a round-robin fashion among the available processors. As a result, array-elements with consecutive subscript-values are almost always put in different processors. In a one-dimensional array (from 0 to \(n - 1 \)), element \(i \) is put in location \(\lceil i/p \rceil \) of processor \(i \pmod{p} \).

In both of the preceding cases, if more than one subscript in a sequence uses the same allocator, all of the consecutive subscripts with the same allocator are combined into a single one-dimensional index that is processed using **SPREAD** or **CYCLE**, as the case may be. For instance in the following declaration:

```plaintext
VAR
y:ARRAY [1..10] CYCLE [-2..27] CYCLE OF INTEGER;
```

the two subscripts are combined into a single subscript that runs from 0 to 299, and the elements are distributed by the **CYCLE** distribution, using this one subscript.

The following two allocators correspond to **SPREAD** and **CYCLE**, respectively, but inhibit the process of combining several consecutive subscripts with the same allocator into a single subscript:

3. **SBLOCK.** this corresponds to **SPREAD**.
4. **CBLOCK.** this corresponds to **CYCLE**.
5. **LOCAL.** This forces all elements of the array whose subscripts only differ in an index defined to be **LOCAL**, to be in the same processor.

Exercises.

4.1. If we have a computer with 6 processors (numbered from 0 to 5), describe how the following array is allocated among the processors:

```plaintext
VAR
y:ARRAY [1..10] CYCLE [-2..27] CYCLE OF INTEGER;
```

4.2. If we have a computer with 6 processors (numbered from 0 to 5), describe how the following array is allocated among the processors:

```plaintext
VAR
y:ARRAY [1..10] CBLOCK [-2..27] CBLOCK OF INTEGER;
```

4.3. **The FORALL Statement.** In this section we will describe the command that initiates parallel execution of code-segments. There is a single statement that suffices to handle asynchronous and synchronous parallel execution, and can consequently, be used for MIMD or SIMD programs.

4.1. The basic syntax is:
FORALL identifier:rangeType IN { PARALLEL }
statementSequence
SYNC
END

Here:

1. identifier is a variable that becomes available inside the block — its scope is the FORALL-block. This identifier takes on a unique value in each of the threads of control that are created by FORALL-statement.
2. rangeType is a data-type that defines a range of values — it is like that used to define subscript-ranges in arrays. It define the number of parallel threads created by the FORALL-statement. One such thread is created for each value in the rangeType, and in each such thread, the identifier identifier takes on the corresponding value.
3. statementSequence is the code that is executed in parallel.

Example:
FORALL x:[1..8] IN PARALLEL
y:=f(x)+1;
END

This statement creates 8 processes, in a 1-1 correspondence with the numbers 1 through 8. In process i, the variable x takes the value i.

The two synchronization-primitives, PARALLEL and SYNC, determine how the parallel threads are executed. The PARALLEL option specifies asynchronous processes — this is MIMD-parallel execution. The SYNC option specifies synchronous execution of the threads — essentially SIMD-parallel execution.

Two standard Modula-2 commands SEND and WAIT are provided for explicit synchronization of asynchronous processes. The syntax of these functions is given by:

`SEND(VAR x:SIGNAL);`
`WAIT(VAR x:SIGNAL);`

The sequence of events involved in using these functions is:

1. A variable of type SIGNAL is declared globally;
2. When a process calls SEND or WAIT with this variable as its parameter, the variable is initialized. Later, when the matching function is called this value is accessed.

4.3.1. The asynchronous case. In the asynchronous case, the FORALL-statement terminates when the last process in the StatementSequence terminates. No assumptions are made about the order of execution of the statements in the asynchronous case, except where they are explicitly synchronized via the SEND and WAIT statements. The statements in statementSequence may refer to their private value of identifier or any global variable. If two processes attempt to store data to the same global memory-location, the result is undefined, but equal to one of the values that were stored to it.

4.3.2. The synchronous case. This is the case that corresponds to execution on a SIMD computer. This case is like the asynchronous case except that the statements in the body of the construct are executed synchronously. There are a number of details to be worked out at this point.
Sequence A sequence of statements of the form

\[S_1; S_2; \ldots; S_k \]

is executed synchronously by a set of processes by synchronously executing each of the \(S_i \) in such a way that \(S_{i+1} \) is not begun until statement \(S_i \) is completed. This can be regarded as a recursive definition.

Assignment An assignment statement of the form

\[L := E \]

is executed synchronously by a set \(\text{rangeType} \) of processes as follows.

1. All processes in \(\text{rangeType} \) evaluate the designator \(L \) synchronously, yielding \(|\text{rangeType}| \) results, each designating a variable.
2. All processors in \(\text{rangeType} \) evaluate expression \(E \) synchronously, yielding \(|\text{rangeType}| \) values.
3. All processes in \(\text{rangeType} \) store their values computed in the second step into their respective variables computed in the first step (in arbitrary order).

Then the assignment terminates. If the third step results in several values being stored into the same memory location, one of the store-operations is successful — and which of them succeeds is indeterminate.

expressions These are executed somewhat like the assignment statement above. The set of processes \(\text{rangeType} \) apply the operators to the operands in the same order and in unison. The order of application is determined by the precedence-rules of Modula-2.

If statement An if statement executes somewhat like a where statement in C* — see page 105 in the previous section. The following statement

IF \(e_1 \) THEN \(t_1 \)
ELSIF \(e_2 \) THEN \(t_2 \)
\[\ldots \]
ELSE \(t_k \)
END

is executed synchronously as follows:

1. All processes evaluate expression \(e_1 \) synchronously.
2. Those processes for which \(e_1 \) evaluates to TRUE then execute \(t_1 \) synchronously, while the other processes evaluate \(e_2 \) synchronously.
3. Those processes whose evaluation of \(e_2 \) results in TRUE then execute \(t_2 \) synchronously, and so on.

The synchronous execution of the if statement terminates when the last non-empty subset of \(\text{rangeType} \) terminates.

CASE statement Syntax:

CASE \(e \) OF
\[c_1: s_1 \]
\[\ldots \]
\[c_k: s_k \]
ELSE \(s_0 \)
END

(here the ELSE clause is optional).

1. All processes in \(\text{rangeType} \) synchronously evaluate expression \(e \).
2. Each process selects the case whose label matches the computed value of e. The set of processes rangeType gets partitioned into k (or k + 1, if the ELSE clause appears). The processes in each set synchronously execute the statements that correspond to the case that they have selected. This is very much like the switch statement in the old version of C*. (In the current version of C*, the switch statement is used only for sequential execution).

LOOP statement. This is one of the standard looping constructs in Modula-2.

LOOP
t1
END

Looping continues until the EXIT statement is executed. This type of statement is executed synchronously in Modula* by a set of processors as follows:
- As long as there is one active process within the scope of the LOOP statement, the active processes execute statement t1 synchronously.
- An EXIT statement is executed synchronously by a set of processes by marking those processes inactive with respect to the smallest enclosing LOOP statement.

WHILE statement Syntax:

WHILE condition DO
t1
END

In Modula* each iteration of the loop involves:
1. all active processes execute the code in condition and evaluate it.
2. processes whose evaluation resulted in FALSE are marked inactive.
3. all other processes remain active and synchronously execute the code in t1.

The execution of the WHILE statement continues until there are no active processes.

FORALL statement One of the interesting aspects of Modula* is that parallel code can be nested. Consider the following FORALL statement:

FORALL D: U
t1
...tk
END

This is executed synchronously by a set rangeType, of processes, as follows:
1. Each process $p \in \text{rangeType}$ computes U_p, the set of elements in the range given by U. Processes may compute different values for U_p, if U has identifier (the index created by the enclosing FORALL statement that identifies the process — see 4.1 on page 130), as a parameter.
2. Each process p creates a set, S_p, of processes with $|S_p| = U_p$ and supplies each process with a constant, D, bound to a unique value of U_p.
3. Each process, \(p \), initiates the execution of the statement sequence \(t_1 \) through \(t_k \) by \(S_p \). Thus there are \(|\text{rangeType}| \) sets sets of processes, each executing the sequence of statements independently of the others. Each such set of processes executes its statements synchronously or asynchronously, depending on the option chosen in this \textbf{FORALL} statement.

\textbf{WAIT} and \textbf{SEND} When a set of processes synchronously executes a \textbf{WAIT} command, if \textit{any} process in the set blocks on this command, then \textit{all} of them do. This rule allows synchronization to be maintained.

\textbf{Procedure} call The set of processes \text{rangeType} synchronously executes a procedure call of the form

\[P(x_1,\ldots,x_k); \]

as follows:

1. Each process in \text{rangeType} creates an activation of procedure \(P \).
2. All processes in \text{rangeType} evaluate the actual parameters \(x_1,\ldots,x_k \) synchronously in the same order (not necessarily left to right) and substitute them for the corresponding formal parameters in their respective activations of \(P \).
3. All processes execute the body of \(P \) synchronously in the environment given by their respective activations.
4. The procedure call terminates when all processes in \text{rangeType} have been designated inactive with respect to the call.

Note: there is an implied return statement at the end of each procedure. In an explicit return statement like

\[\text{RETURN} \ [E]; \]

if the expression \(E \) is supplied all processes synchronously evaluate it and use this value as the result of the function-call. After evaluating \(E \) (or if no expression is supplied) all processes in \text{rangeType} are marked inactive with respect to the most recent procedure call.

4.4. Sample Programs. Here are some sample programs. Our standard example is the program for adding up \(n \) integers. This example was first introduced in the Introduction (on page 59), and a implementation in C* appeared in § 3.3 (on page 103). It is interesting to compare these two programs:

\begin{verbatim}
VAR V: ARRAY [0..N-1] OF REAL;
VAR stride: ARRAY [0..N-1] OF CARDINAL;
BEGIN
FORALL i : [0..N-1] IN SYNC
 stride[i] := 1;
 WHILE stride[i] \leq N DO
 IF ((i MOD (stride[i] \times 2)) = 0) AND ((i - stride[i]) \geq 0) THEN
 V[i] := V[i] + V[i - stride[i]]
 END;
 stride[i] := stride[i] \times 2
 END
END (* sum in V[N] *)
END
\end{verbatim}
Note that we must explicitly declare a parallel variable stride[i] and its use is indexed by the process-indexing variable i.

Modula* does not take advantage of the hardware support for performing operations like the above summation in a single statement.

We can also perform these calculations asynchronously:

```plaintext
VAR V: ARRAY [0..N-1] OF REAL;
VAR stride: CARDINAL;
BEGIN
  stride := 1;
  WHILE stride < N DO
    FORALL i : [0..N-1] IN PARALLEL
      IF ((i MOD (stride * 2)) = 0) AND ((i - stride) =: 0) THEN
        V[i] := V[i] + V[i - stride]
      END;
    stride := stride * 2
  END
END (* sum in V[N-1] *)
END
```

4.5. A Critique of Modula*.

The language Modula* responds to all of the points raised by Tichy, Philippsen, and Hatcher in [66] and it might, consequently, be regarded as a “Second generation” parallel programming language (with C* a first generation language). This is particularly true in light of the probable trend toward the development of hybrid MIMD-SIMD computers like the CM-5 and the Triton/1, and the fact that Modula* handles asynchronous as well as synchronous parallel code.

The simple and uniform semantics of the parallel code in Modula* makes programs very portable, and even makes Modula* a good language for describing parallel algorithms in the abstract sense.\(^{11}\)

One suggestion: some operations can be performed very quickly and efficiently on a parallel computer, but the implementation of the algorithm is highly dependent upon the architecture and the precise layout of the data. It would be nice if Modula* supported these operations.

For instance the census-operations like:

1. Forming a sum or product of a series of numbers.
2. Performing versions of the generic ASCEND or DESCEND algorithms in chapter 3 (see page 57).

Many architectures have special hardware support for such operations — for instance the Connection Machines support census-operations. The material in chapter 3 shows that such hardware support is at least possible for the ASCEND and DESCEND algorithms. I feel that it might be desirable to add ASCEND and DESCEND operations to the Modula* language, where the user could supply the \texttt{OPER(*,*,*,*)}-function. Failing this, it might be desirable to include a generic census operation in the language.

\(^{11}\)This is reminiscent of the Algol language, which was used as much as a \textit{publication language} or \textit{pseudocode} for describing algorithms, as an actual programming language.
The alternative to implementing these generic parallel operations would be to write the Modula* compiler to automatically recognize these constructs in a program. This does not appear to be promising — such a compiler would constitute an “automatically parallelizing” compiler (at least to some extent\(^\text{12}\)).

\(^{12}\text{The important point is that we are requiring the compiler to recognize the programmer’s intent, rather than to simply translate the program. The experience with such compilers has been discouraging.}\)
CHAPTER 5

Numerical Algorithms

In this chapter we will develop SIMD algorithms for solving several types of numerical problems.

1. Linear algebra

1.1. Matrix-multiplication. In this section we will discuss algorithms for performing various matrix operations. We will assume that all matrices are \(n \times n \), unless otherwise stated. It will be straightforward to generalize these algorithms to non-square matrices where applicable. We will also assume that we have a CREW parallel computer at our disposal, unless otherwise stated. We also get:

Proposition 1.1. Two \(n \times n \) matrices \(A \) and \(B \) can be multiplied in \(O(\lg n) \)-time using \(O(n^3) \) processors.

Proof. The idea here is that we form the \(n^3 \) products \(A_{ij}B_{jk} \) and take \(O(\lg n) \) steps to sum over \(j \). \(\square \)

Since there exist algorithms for matrix multiplication that require fewer than \(n^3 \) multiplications (the best current asymptotic estimate, as of 1991, is \(n^{2.376} \) multiplications — see [34]) we can generalize the above to:

Corollary 1.2. If multiplication of \(n \times n \) matrices can be accomplished with \(M(n) \) multiplications then it can be done in \(O(\lg n) \)-time using \(M(n) \) processors.

This algorithm is efficiently implemented by the sample program on page 124. We present an algorithm for that due to Reif and Pan which inverts an \(n \times n \) matrix in \(O(\lg^2 n) \)-time using \(M(n) \) processors — see [127]. Recall that \(M(n) \) is the number of multiplications needed to multiply two \(n \times n \) matrices.

1.2. Systems of linear equations. In this section we will study parallel algorithms for solving systems of linear equations

\[Ax = b \]

where \(A \) is an \(n \times n \) matrix, and \(b \) is an \(n \)-dimensional vector.

We will concentrate upon iterative methods for solving such equations. There are a number of such iterative methods available:

- The Jacobi Method.
- The JOR method — a variation on the Jacobi method.
- The Gauss-Seidel Method.
- The SOR method.
These general procedures build upon each other. The last method is the one we will explore in some detail, since a variant of it is suitable for implementation on a parallel computer. All of these methods make the basic assumption that the largest elements of the matrix A are located on the main diagonal. Although this assumption may seem rather restrictive:

- This turns out to be a natural assumption for many of the applications of systems of linear equations. One important application involves numerical solutions of partial differential equations, and the matrices that arise in this way are mostly zero. See § 6 for more information on this application.
- Matrices not dominated by their diagonal entries can sometimes be transformed into this format by permuting rows and columns.

In 1976, Csanky found NC-parallel algorithms for computing determinants and inverses of matrices — see [39], and § 1.5 on page 174. Determinants of matrices are defined in 1.8 on page 139. Csanky’s algorithm for the inverse of a matrix wasn’t numerically stable and in 1985, Pan and Reif found an improved algorithm for this — see [127] and § 1.3 on page 165. This algorithm is an important illustration of the fact that the best parallel algorithm for a problem is often entirely different from the best sequential algorithms. The standard sequential algorithm for inverting a matrix, Gaussian elimination, does not lend itself to parallelization because the process of choosing pivot point is P-complete — see [165]. It is very likely that there doesn’t exist a fast parallel algorithm for inverting a matrix based upon the more traditional approach of Gaussian elimination. See the discussion on page 41 for more information.

§ 1.3 discusses methods that work for arbitrary invertible matrices. These methods require more processors than the iterative methods discussed in the other sections, but are of some theoretical interest.

1.2.1. Generalities on vectors and matrices. Recall that a matrix is a linear transformation on a vector-space.

Definition 1.3. Let A be an $n \times n$ matrix. A will be called

1. lower triangular if $A_{ij} = 0$ whenever $i \geq j$.
2. full lower triangular if $A_{ij} = 0$ whenever $i > j$.
3. upper triangular if $A_{ij} = 0$ whenever $i \leq j$.
4. full upper triangular if $A_{ij} = 0$ whenever $i < j$.

Note that this definition implies that upper and lower triangular matrices have zeroes on the main diagonal. Many authors define these terms in such a way that the matrix is permitted to have nonzero entries on the main diagonal.

Definition 1.4. Given a matrix A, the Hermitian transpose of A, denoted A^H, is defined by $(A^H)_{ij} = A_{ji}^\ast$, where \ast denotes the complex conjugate;

Definition 1.5. Let u and v be two vectors of an n-dimensional vector-space V. The inner product of u and v, denoted (u, v), is defined by

$$ (u, v) = \sum_{i=1}^{n} \bar{u}_i \cdot v_i $$

where \bar{u}_i denotes the complex conjugate of v_i.

Inner products have the following properties:
1. \(\|v\|^2 = (v, v) \)
2. \((v, w) = (w, v) \)
3. \((v, Aw) = (A^H v, w) \)

Definition 1.6. A set of vectors \(\{v_1, \ldots, v_k\} \) is called orthonormal if
\[
(v_i, v_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}
\]

Definition 1.7. Let \(L = \{n_1, \ldots, n_k\} \) be the result of permuting the list of integers \(\{1, \ldots, k\} \). The parity of the permutation, \(\varphi(n_1, \ldots, n_k) \) is \(\pm 1 \), and is computed via:

1. For each \(n_i \) in \(L \), count the number of values \(n_j \) appearing to the right of \(n_i \) in \(L \) (i.e. \(j > i \)) such that \(n_i > n_j \). Let this count be \(c_i \).
2. Form the total \(c = \sum_{i=1}^{k} c_i \), and define \(\varphi(n_1, \ldots, n_k) = (-1)^c \).

The number \(c \) roughly measures the extent to which the permutation alters the normal sequence of the integers \(\{1, \ldots, k\} \).

Suppose the permutation is \(\{3, 1, 2, 4, 5\} \). Then \(c_1 = 4 \) because the first element in this sequence is 3 and there are 4 smaller elements to the right of it in the sequence. It follows that the parity of this permutation is +1. Permutations with a parity of +1 are commonly called even permutations and ones with a parity of −1 are called odd permutations.

Definition 1.8. If \(A \) is an \(n \times n \) matrix, the determinant of \(A \) is defined to be the
\[
\det(A) = \sum_{i_1, \ldots, i_n \text{ all distinct}} \varphi(i_1, \ldots, i_n) A_{1,i_1} \cdots A_{n,i_n}
\]

where \(\varphi(i_1, \ldots, i_n) \) is the parity of the permutation \(\begin{pmatrix} 1 & \cdots & n \\ i_1 & \cdots & i_n \end{pmatrix} \).

There is a geometric definition of determinant that is interesting:

Let \(C \) be the \(n \) dimensional unit cube at the origin of the coordinate system. If \(C \) is defined by letting each of the \(n \) coordinates go from 0 to 1. Now consider \(A(C) \), where \(A \) is an \(n \times n \) matrix. This an \(n \)-dimensional polyhedron. Then the absolute value of \(\det(A(C)) \) is equal to the volume of \(A(C) \).

Determining the sign of \(\det(A) \) is not quite so simple — it depends upon something called the orientation of \(A(C) \).

Here are some basic properties of determinants of matrices:

Proposition 1.9. If \(A \) and \(B \) are \(n \times n \) matrices then:
1. \(\det(A \cdot B) = \det(A) \cdot \det(B) \);
2. The linear transformation represented by \(A \) is invertible if and only if \(\det(A) \neq 0 \).
3. If \(A \) is a lower or upper triangular matrix and \(D \) is a diagonal matrix, then \(\det(D + A) = \det(D) \).

Vector-spaces can be equipped with measures of the size of vectors: these are called norms of vectors. Our measure of the size of a matrix will be called the norm.
of a matrix — it will be closely associated with a norm of a vector\(^1\). Essentially, the norm of a matrix will measure the extent to which that matrix “stretches” vectors in the vector-space — where *stretching* is measured with respect to a norm of vectors.

Definition 1.10. Let \(V \) be a vector space. A *norm* on \(V \) is a function \(\| \cdot \| : V \rightarrow \mathbb{R} \), with the following properties:

1. \(\| v \| = 0 \), if and only if the vector \(v \) is 0;
2. for all \(v, w \in V \), \(\| v + w \| \leq \| v \| + \| w \| \);
3. for all \(v \in V, c \in \mathbb{C} \), \(\| c \cdot v \| = |c| \cdot \| v \| \);

A function \(\| \cdot \| : \text{Matrices over } V \rightarrow \mathbb{R} \) is called a *matrix norm* if it satisfies conditions like 1, 2, and 3 above and, in addition:

4. for all matrices \(X \) and \(Y \) over \(V \), \(\| XY \| \leq \| X \| \cdot \| Y \| \).

Definition 1.11. Given a vector norm \(\| \cdot \| \) on a vector space we can define the *associated matrix norm* as follows:

\[
\| M \| = \max_{v \neq 0} \frac{\| Mv \|}{\| v \|}.
\]

1. The matrix norm inherits properties 1, 2, and 3 from the vector norm. Property 4 results from the fact that the vector \(v \) that gives rise to the maximum value for \(\| Xv \| \) or \(\| Yv \| \) might not also give the maximum value of \(\| XYv \| \).
2. Property 3 of the vector norm implies that we can define the matrix norm via:

\[
\| X \| = \max_{\| v \| = 1} \| Xv \|.
\]

Here are three fairly standard vector norms:

Definition 1.12.

\[
\begin{align*}
\| v \|_1 &= \sum_i |v_i|; \\
\| v \|_\infty &= \max_i |v_i|; \\
\| v \|_2 &= \sqrt{\sum_i |v_i|^2};
\end{align*}
\]

The three vector norms give rise to corresponding matrix norms.

Definition 1.13.

1. A square matrix will be called a *diagonal matrix* if all entries not on the main diagonal are 0;
2. \(\det(\lambda \cdot I - A) = 0 \) is a polynomial in \(\lambda \) called the *characteristic polynomial* of \(A \);
3. A number \(\lambda \in \mathbb{C} \) is called an *eigenvalue* of \(A \) if there exists a vector \(v \neq 0 \) such that \(Av = \lambda v \). This vector is called the *eigenvector* corresponding to \(\lambda \); An alternate definition of eigenvalues of \(A \) is: \(\lambda \) is an *eigenvalue* of \(A \) if and only if the matrix \(\lambda \cdot I - A \) is *not invertible*. This leads to an equation for computing eigenvalues (at least, for *finite-dimensional* matrices): eigenvalues are roots of the characteristic polynomial.
4. If \(\lambda \) is an eigenvalue of a matrix \(A \), then the *eigenspace* associated with \(\lambda \) is the space of vectors, \(v \), satisfying \((\lambda \cdot I - A)v = 0 \). If \(A \) has only one eigenvalue equal to \(\lambda \) the eigenspace associated to \(\lambda \) is 1 dimensional — it consists of all scalar multiples of the eigenvector associated with \(\lambda \).
5. The *minimal polynomial* \(\mu(\lambda) \) of a square matrix \(A \) is the polynomial, \(\mu(x) \), of lowest degree such that \(\mu(A) = 0 \).
6. The *nullspace* of a matrix \(A \) is the space of all vectors \(v \) such that \(Av = 0 \). It is the same as the eigenspace of 0 (regarded as an eigenvalue of \(A \)).

\(^1\)Although there exist norms of matrices that are *not* induced by norms of vectors, we will not use them in the present discussion.
7. \(\rho(A) \), the spectral radius of \(A \) is defined to be the maximum magnitude of the eigenvalues of \(A \).

8. A matrix \(A \) is called Hermitian if \(A = A^H \). Recall the definition of the Hermitian transpose in 1.4 on page 138.

9. A matrix \(U \) is called unitary if \(U^{-1} = U^H \).

10. The condition number of a matrix is defined by \(\text{cond } A = \| A \|_2 \cdot \| A^{-1} \|_2 \geq \| I \| = 1 \) if \(A \) is nonsingular, \(\infty \) otherwise.

It is not difficult to see that the eigenvalues of \(A^H \) are the complex conjugates of those of \(A \) — consequently, if \(A \) is Hermitian its eigenvalues are real.

Note that eigenvectors are not nearly as uniquely determined as eigenvalues — for instance any scalar multiple of an eigenvector associated with a given eigenvalue is also an eigenvector associated with that eigenvalue.

Although computation of eigenvalues and eigenvectors of matrices is somewhat difficult in general, some special classes of matrices have symmetries that simplify the problem. For instance, the eigenvalues of a diagonal matrix are just the values that occur in the main diagonal. For a more interesting example of computation of eigenvalues and eigenvectors of a matrix, see \(\S \) 2.4 on page 197 and \(\S \) 6.1.3 on page 244.

Proposition 1.14. If \(\| * \| \) is any norm and \(A \) is any matrix, then:

1. \(\rho(A) \leq \| A \| \).
2. \(\| A^k \| \to 0 \) as \(k \to \infty \) if and only if \(\rho(A) < 1 \).
3. \(\det(A) = \prod_{i=1}^{n} \lambda_i \), where the \(\lambda_i \) are the eigenvalues of \(A \). Here, given values of eigenvalues may occur more than once (as roots of the characteristic polynomial).

Proof. First statement: Let \(\lambda \) be the largest eigenvalue of \(A \). Then \(\rho(A) = | \lambda | \), and \(Av = \lambda v \), where \(v \) is the eigenvector corresponding to \(\lambda \). But \(\| Av \| \leq \| A \| \cdot \| v \| \) by 1.11, and \(Av = \lambda v \) and \(\| Av \| = | \lambda | \cdot \| v \| = \rho(A) \| v \| \). We get \(\rho(A) \| v \| \leq \| A \| \cdot \| v \| \) and the conclusion follows upon dividing by \(\| v \| \).

Second statement: Suppose \(\rho(A) \geq 1 \). Then \(\rho(A)^k \leq \rho(A^k) \geq 1 \) for all \(k \) and this means that \(\| A^k \| \geq 1 \) for all \(k \). On the other hand, if \(\| A^k \| \to 0 \) as \(k \to \infty \), then \(\rho(A^k) \to 0 \) as \(k \to \infty \). The fact that \(\rho(A) \leq \rho(A^k) \) and the fact that powers of numbers \(\geq 1 \) are all \(\geq 1 \) imply the conclusion.

Third statement: This follows from the general fact that the constant-term of a polynomial is equal to its value at zero and the product of the roots. We apply this general fact to the characteristic polynomial \(\det(A - \lambda \cdot I) = 0 \). □

Definition 1.15. Two \(n \times n \) matrices \(A \) and \(B \) will be said to be similar if there exists a third invertible \(n \times n \) \(C \) such that \(A = C B C^{-1} \).

Two matrices that are similar are equivalent in some sense. Suppose:

- \(A \) is a transformation of a vector-space with basis vectors \(\{ b_i \}, i = 1, \ldots, n \).
- \(B \) is a transformation of the same vector-space with basis vectors \(\{ b'_i \} \).
- \(C \) is the matrix whose columns are the result of expressing the \(\{ b'_i \} \) in terms of the \(\{ b_i \} \).

Then the result of writing the \(B \)-transformation in terms of the basis \(\{ b_i \} \) is the \(A \) matrix (if \(A = C B C^{-1} \)). In other words, similar matrices represent the same transformation — in different coordinate-systems. It makes sense that:
LEMMA 1.16. Let A and B be similar $n \times n$ matrices with $A = CBC^{-1}$ for some invertible matrix C. Then A and B have the same eigenvalues and spectral radii.

PROOF. The statement about the eigenvalues implies the one about spectral radius. Let λ be an eigenvalue of A with corresponding eigenvector V (see 1.13 on page 140). Then

$$AV = \lambda V$$

Now replace A by CBC^{-1} in this formula to get

$$CBC^{-1}V = \lambda V$$

and multiply (on the left) by C^{-1} to get

$$BC^{-1}V = \lambda C^{-1}V$$

This implies that λ is an eigenvalue of B with corresponding eigenvector $C^{-1}V$. A similar argument implies that every eigenvalue of B also occurs as an eigenvalue of A. □

In fact

LEMMA 1.17. Let A be an $n \times n$ square matrix. Then A is similar to a full upper triangular matrix, T, with the eigenvalues of A on the main diagonal.

PROOF. Suppose the eigenvalues of A are $\lambda_1, \ldots, \lambda_k$ with corresponding linearly independent eigenvectors $v = \{v_1, \ldots, v_k\}$. Now we form a basis of the vector space composed of eigenvectors and completed (i.e. the eigenvectors might not form a complete basis for the vector-space) by some other vectors linearly independent of the eigenvectors — say $u = \{u_1, \ldots, u_{n-k}\}$. In this basis, A has the form

$$
\begin{pmatrix}
D_1 & M_1 \\
0 & A_2
\end{pmatrix}
$$

where M_1 is some $(k \times k)$ matrix, A_2 is an $n-k \times n-k$ matrix and D_1 is the diagonal matrix:

$$
\begin{pmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_k
\end{pmatrix}
$$

Note that we have to include the submatrix M_1 because, although A maps the $\{v_i\}$ into themselves, it may map the $\{u_j\}$ into the subspace spanned by the $\{v_i\}$. Now we find the eigenvalues and corresponding eigenvectors of A_1 and modify the set of vectors u so that it contains as many of these new eigenvectors as possible. In this new basis, A_1 will have the form

$$
\begin{pmatrix}
D_2 & M_2 \\
0 & A_3
\end{pmatrix}
$$

and the original matrix A will have the form

$$
\begin{pmatrix}
D_1 & M_1 \\
0 & D_2 & M_2 \\
0 & 0 & A_3
\end{pmatrix}
$$

The argument follows by induction: we carry out a similar operation on A_3 and so forth to get a sequence of matrices $\{A_4, \ldots, A_\ell\}$ of monotonically decreasing size.
The process terminates when we reach a matrix \(A_\ell \) that is \(1 \times 1 \) and, at that point, the original matrix \(A \) is full upper-triangular. \(\square \)

If \(A \) is Hermitian, we can say more:

Lemma 1.18. Let \(A \) be a Hermitian matrix. Then \(A \) is similar to a diagonal matrix with the eigenvalues of \(A \) on the main diagonal. The similarity transformation is unitary — in other words

\[
A = U D U^{-1}
\]

where \(U \) is a unitary matrix and \(A \) is a diagonal matrix.

Recall the definition of a unitary matrix in 1.13 on page 141. This lemma is proved in Appendix 1.2.2 on page 147.

Lemma 1.19. Let \(\lambda \) be an eigenvalue of a nonsingular matrix \(W \). Then \(1/\lambda \) is an eigenvalue of \(W^{-1} \).

Proof. Note that \(\lambda \neq 0 \) because the matrix is nonsingular. Let \(v \) be an associated eigenvector so \(Wv = \lambda v \). Then \(Wv \leq 0 \) and \(W^{-1}(Wv) = v = (1/\lambda)\lambda v = (1/\lambda)Wv \). \(\square \)

Lemma 1.20. \(\|W\|_2 = \|W^H\|_2 \); \(\|W\|_2 = \rho(W) \) if \(W = W^H \).

Proof. Recall the definition of the inner product in 1.5 on page 138. The three basic properties of inner product listed after 1.5 imply the first statement, since

\[
\|W\|_2 = \sqrt{\max_{v \neq 0} \langle Wv, Wv \rangle / \langle v, v \rangle} \\
= \sqrt{\max_{v \neq 0} \langle Wv, Wv \rangle / \langle v, v \rangle} \\
= \sqrt{\max_{v \neq 0} |\langle v, W^H Wv \rangle| / \langle v, v \rangle} \\
= \sqrt{\max_{v \neq 0} |\langle W^H Wv, v \rangle| / \langle v, v \rangle}
\]

Suppose \(V \) is the vector-space upon which \(W \) acts: \(W: V \to V \). The second statement follows from the fact that we can find a basis for \(V \) composed of eigenvectors of \(W \) (here, we use the term eigenvector in the loosest sense: the nullspace of \(W \) is generated by the eigenvectors of 0. This is a well-known result that is based upon the fact that eigenvectors of distinct eigenvalues are linearly independent, and a count of the dimensions of the nullspaces of \(W - \lambda \cdot I \) shows that the vector-space generated by the eigenspaces of all of the eigenvectors is all of \(V \). Suppose that \(v = \sum_{i=1}^n c_i e_i \), where the \(e_i \) are eigenvectors of \(W \). Then

\[
(Wv, Wv) = \sum_{i=1}^n \langle Wc_i e_i, Wc_i e_i \rangle \\
= \sum_{i=1}^n \langle \lambda_i c_i e_i, \lambda_i c_i e_i \rangle \\
= \sum_{i=1}^n |\lambda_i|^2 |c_i|^2
\]
so \((Wv, Wv)\) is a weighted average of the eigenvalues of \(W\). It follows that the maximum value of \((Wv, Wv)/(v, v)\) occurs when \(v\) is an eigenvector, and that value is the square of an eigenvalue. □

Definition 1.21. A Hermitian matrix will be called:

1. **Positive semidefinite** if \((Av, v) \geq 0\) for any nonzero vector \(v\).
2. **Positive definite** if \((Av, v) > 0\) for any nonzero vector \(v\).

A will be called **Hermitian positive semidefinite**.

Lemma 1.22. A Hermitian matrix is positive semidefinite if and only if its eigenvalues are nonnegative. It is positive definite if and only if its eigenvalues are positive.

This follows immediately from 1.18 on page 143.

Corollary 1.23. Let \(A\) be a positive semidefinite matrix. Then there exists a positive semidefinite matrix \(W\) such that

\[A = W^2 \]

Proof. This follows immediately from 1.18 on page 143, which implies that

\[A = U D U^{-1} \]

where \(D\) is a diagonal matrix with nonnegative entries on the diagonal. We define

\[W = U D^{1/2} U^{-1} \]

where the entries of \(D^{1/2}\) are just the (nonnegative) square roots of corresponding entries of \(D\). Now

\[W^2 = U D^{1/2} U^{-1} U D^{1/2} U^{-1} = U D^{1/2} D^{1/2} U^{-1} = U D U^{-1} = A \]

□

It turns out that the 1-norm and the \(\infty\)-norm of matrices are very easy to compute:

Proposition 1.24. The matrix norm associated with the vector norm \(\| \ast \|_\infty\) is given by \(\|M\|_\infty = \max_i \sum_{j=1}^n |M_{ij}|\).

Proof. We must maximize \(\max_i \sum_j M_{ij} \cdot v_j\), subject to the requirement that all of the \(v_j\) are between \(-1\) and \(1\). If is clear that we can maximize one of these quantities, say the \(i\)th, by setting:

\[v_j = \begin{cases} +1, & \text{if } M_{ij} \text{ is positive;} \\ -1, & \text{if } M_{ij} \text{ is negative.} \end{cases} \]

and this will result in a total value of \(\sum_j |M_{ij}|\) for the \(i\)th row. The norm of the matrix is just the maximum of these row-sums. □

Proposition 1.25. The 1-norm, \(\|M\|_1\), of a matrix \(M\) is given by

\[\max_j \sum_{i=1}^n |M_{ij}| \]
Figure 5.1. A 2-dimensional diamond

Figure 5.2.

PROOF. This is somewhat more difficult to show than the case of the ∞-norm. We must compute the maximum of $\sum_i |M_{ij} \cdot v_j|$ subject to the requirement that $\sum_j |v_j| = 1$. The crucial step involves showing:

Claim: The maximum occurs when all but one of the v_j is zero. The remaining nonzero v_j must be $+1$ or -1.

We will give a heuristic proof of this claim. With a little work the argument can be made completely rigorous. Essentially, we must consider the geometric significance of the 1-norm of vectors, and the shape of “spheres” with respect to this norm. The set of all vectors v with the property that $\|v\|_1 = 1$ forms a polyhedron centered at the origin. We will call this a diamond. Figure 5.1 shows a 2-dimensional diamond.

The 1-norm of a vector can be regarded as the radius (in the sense of 1-norms) of the smallest diamond centered at the origin, that encloses the vector. With this in mind, we can define the 1-norm of a matrix M as the radius of the smallest diamond that encloses M(unit diamond), as in figure 5.2.
Note that the radius of a diamond centered at the origin is easy to measure — it is just the \(x\)-intercept or the \(y\)-intercept. The heuristic part of the argument is to note that the smallest enclosing diamond always intersects \(M\) (unit diamond) at a vertex. This implies the claim, however, because vertices of the unit diamond are precisely the points with one coordinate equal to +1 or −1 and all other coordinates 0.

Given this claim, the proposition follows quickly. If the \(j\)th component of \(v\) is 1 and all other components are 0, then \(\|Mv\|_1 = \sum_i |M_{ij}|\). The 1-norm of \(M\) is computed with the value of \(j\) that maximizes this.

Unfortunately, there is no simple formula for the 2-norm of a matrix in terms of the entries of the matrix. The 2-norm of a Hermitian positive semidefinite matrix (defined in 1.21 on page 144) turns out to be equal to the largest eigenvalue of the matrix\(^2\). We do have the following result that relates these quantities, and the spectral radius:

Lemma 1.26. Let \(W = (w_{ij})\). Then \(\|W^H W\|_2 = \rho(W^H W) = \|W\|_2^2 \leq \|W^H W\|_1 \leq \max_i \sum_j |w_{ij}| \max_j \sum_i |w_{ij}| \leq n \|W^H W\|_2\).

Proof. It is not hard to see that \(\|W^H W\|_1 \leq \max_i \sum_j |w_{ij}| \max_j \sum_i |w_{ij}|\) since \(\|W^H W\|_1 \leq \|W^H\|_1 \cdot \|W\|_1\) and \(\|W^H\|_1 = \|W\|_\infty\), by the explicit formulas given for these norms. The remaining statements follow from 1.54 on page 170.

Exercises.

1.1. Let \(A\) be a square matrix. Show that if \(\lambda_1\) and \(\lambda_2\) are two eigenvalues of \(A\) with associated eigenvectors \(v_1\) and \(v_2\) and \(\lambda_1 = \lambda_2\), then any linear combination of \(v_1\) and \(v_2\) is a valid eigenvector of \(\lambda_1\) and \(\lambda_2\).

1.2. Let \(A\) be a square matrix and let \(\lambda_1, \ldots, \lambda_k\) be eigenvalues with associated eigenvectors \(v_1, \ldots, v_k\). In addition, suppose that \(\lambda_i \neq \lambda_j\) for all \(i, j\) such that \(i \neq j\), and that all of the \(v_i\) are nonzero. Show that the set of vectors \(\{v_1, \ldots, v_k\}\) are linearly independent — i.e. the only way a linear combination

\[
\sum_{i=1}^k \alpha_i v_i
\]

(where the \(\alpha_i\) are scalars) can equal zero is for all of the coefficients, \(\alpha_i\), to be zero.

The two exercises above show that the numerical values of eigenvalues determine many of the properties of the associated eigenvectors: if the eigenvalues are equal, the eigenvectors are strongly related to each other, and if the eigenvalues are distinct, the eigenvectors are independent.

1.3. Show that the two exercises above imply that an \(n \times n\) matrix cannot have more than \(n\) distinct eigenvalues.

\(^2\)This follows from 1.20 on page 143 and 1.23 on page 144.
1.4. Compute the 1-norm and the ∞-norm of the matrix
\[
\begin{pmatrix}
1 & 2 & 3 \\
0 & -1 & 0 \\
2 & -4 & 8
\end{pmatrix}
\]

1.5. Compute the 1-norm and the ∞-norm of the matrix
\[
\begin{pmatrix}
0 & 1/4 & 1/4 & 1/4 \\
1/4 & 0 & -1/4 & 1/4 \\
-1/4 & -1/4 & 0 & 1/4 \\
-1/4 & -1/4 & -1/4 & 0
\end{pmatrix}
\]

1.6. Compute the eigenvalues and eigenvectors of the matrix
\[
A = \begin{pmatrix}
1 & 2 & 3 \\
2 & -1 & 1 \\
3 & 0 & 0
\end{pmatrix}
\]

Use this computation to compute its spectral radius.

1.7. Let A be the matrix
\[
\begin{pmatrix}
1 & 2 \\
3 & -1
\end{pmatrix}
\]

Compute the 2-norm of A directly.

1.8. Suppose that A is an \(n \times n \) matrix with eigenvectors \(\{v_i\} \) and corresponding eigenvalues \(\{\lambda_i\} \). If I is a \(n \times n \) identity matrix and \(\alpha \) and \(\beta \) are constants show that the eigenvectors of \(\alpha A + \beta I \) are also \(\{v_i\} \) and the corresponding eigenvalues are \(\alpha \lambda_i + \beta \).

1.9. Suppose that W is some square matrix. Show that \(WW^H \) is positive semi-definite. Show that, if W is nonsingular, that \(WW^H \) is positive definite.

1.10. Suppose that W is some nonsingular matrix and A is a positive definite matrix. Show that \(WAW^H \) is positive definite.

1.11. Lemma 1.14 on page 141 implies that, for any square matrix A, \(\rho(A) \leq ||A|| \), where \(||A|| \) is any norm. In addition, we know that, if A is Hermitian, \(\rho(A) = ||A||_2 \). Give an example of a matrix A such that \(\rho(A) < ||A||_2 \) (i.e., they are not equal).

1.2.2. Appendix: Diagonalization of Hermitian Matrices. In this appendix we will prove 1.18 on page 143. This will be somewhat like the proof of 1.17 on page 142, except that the full upper-triangular matrix, \(T \), will turn out to be Hermitian — which will imply that it is a diagonal matrix.

Throughout this section A will denote an \(n \times n \) Hermitian matrix with eigenvalues \(\{\lambda_1, \ldots, \lambda_k\} \) and corresponding eigenspaces \(\{V_1, \ldots, V_k\} \).

We begin with:
DEFINITION 1.27. A set of vectors \(\{v_1, \ldots, v_k\} \) will be called orthogonal if, for every \(i, j \) such that \(i \neq j \) we have
\[
(v_i, v_j) = 0
\]
The set of vectors will be called orthonormal if, in addition, we have
\[
(v_i, v_i) = 1
\]
for all \(1 \leq i \leq k \).

We need to develop a basic property of orthonormal bases of vector spaces:

LEMMA 1.28. Let \(\{v_1, \ldots, v_k\} \) be an orthonormal basis of a vector-space \(V \) and let \(u \) be an arbitrary vector in \(V \). Then
\[
 u = \sum_{i=1}^{k} (v_i, u)v_i
\]

PROOF. Since \(\{v_1, \ldots, v_k\} \) is a basis for \(V \) it is possible to find an expression
\[
 u = \sum_{i=1}^{k} a_i v_i
\]
where the \(\{a_i\} \) are suitable constants. Now we form the inner product of this expression with an arbitrary basis vector \(v_j \):
\[
(v_j, u) = (v_j, \sum_{i=1}^{k} a_i v_i)
\]
\[
= \sum_{i=1}^{k} a_i (v_j, v_i)
\]
\[
= a_j
\]

COROLLARY 1.29. Let \(u = \{u_1, \ldots, u_k\} \) and \(v = \{v_1, \ldots, v_k\} \) be two orthonormal bases of the same vector space. Then the matrix \(U \) that transforms \(u \) into \(v \) is given by
\[
 U_{ij} = (v_j, u_i)
\]
and is a unitary matrix.

PROOF. The \(i^{th} \) column of \(U \) is the set of coefficients that expresses \(u_i \) in terms of the \(\{v_1, \ldots, v_k\} \), so 1.28 above implies this statement. The remaining statement follows from the fact that
\[
(U^{-1})_{ij} = (u_j, v_i)
\]
\[
= (v_i, u_j)
\]
\[
= U_{ji}
\]

Our proof of 1.18 on page 143 will be like that of 1.17 on page 142 except that we will use an orthonormal basis of eigenvectors for \(\mathbb{R}^n \). The first result we need to show this is:
LEMMA 1.30. Let \(\lambda_i \neq \lambda_j \) be eigenvalues of \(A \) with corresponding eigenvectors \(v_i, v_j \). Then
\[
(v_i, v_j) = 0
\]

PROOF. We compute
\[
(Av_i, v_j) = \lambda_i (v_i, v_j) \\
= (v_i, A^H v_j) \\
= (v_i, Av_j) \quad \text{(because \(A \) is Hermitian)} \\
= \lambda_j (v_i, v_j)
\]
So \(\lambda_i (v_i, v_j) = \lambda_j (v_i, v_j) \), which implies the conclusion since \(\lambda_i \neq \lambda_j \).

COROLLARY 1.31. The eigenspaces \(\{ V_1, \ldots, V_k \} \) of \(A \) are orthogonal to each other.

In fact, we will be able to get a basis for \(\mathbb{R}^n \) of orthonormal eigenvectors. This turns out to be the crucial fact that leads to the conclusion. If each of the eigenspaces \(\{ V_1, \ldots, V_k \} \) is one-dimensional, we have already proved that: simply normalize each eigenvector by dividing it by its 2-norm. A slight problem arises if an eigenspace has a dimension higher than 1. We must show that we can find an orthonormal basis within each of these eigenspaces.

LEMMA 1.32. Let \(V \) be a vector space with an inner product \((\cdot, \cdot) \) and a basis \(\{ v_1, \ldots, v_k \} \). Then there exists an orthonormal basis \(\{ \tilde{v}_1, \ldots, \tilde{v}_k \} \). This is computed by an inductive procedure — we compute the following two equations with \(i = 1, \ldots, k \):

\[
(4) \quad u_i = v_i - \sum_{j=1}^{i-1} (v_i, \tilde{v}_j) \tilde{v}_j \\
(5) \quad \tilde{v}_i = u_i / \sqrt{(u_i, u_i)}
\]

Here \(u_1 = v_1 \).

This is called the Gram-Schmidt orthogonalization algorithm.

PROOF. Equation (5) implies that each of the \(\{ \tilde{v}_i \} \) has the property that \((\tilde{v}_i, \tilde{v}_j) = 1 \). We will show that the vectors are orthogonal by induction. Suppose that \((\tilde{v}_j, \tilde{v}_{j'}) = 0 \) for all \(j, j' < i \). We will show that \((u_i, \tilde{v}_{j'}) = 0 \) for all \(j' < i \):

\[
(u_i, \tilde{v}_{j'}) = (v_i - \sum_{j=1}^{i-1} (v_i, \tilde{v}_j) \tilde{v}_j, \tilde{v}_{j'}) \\
= (v_i, \tilde{v}_{j'}) - \sum_{j=1}^{i-1} (v_i, \tilde{v}_j) (\tilde{v}_j, \tilde{v}_{j'}) \\
= (v_i, \tilde{v}_{j'}) - (v_i, \tilde{v}_{j'}) \\
= 0
\]

Suppose we apply this algorithm to each eigenspace \(\{ V_i \} \) whose dimension is \(> 1 \). The new basis-vectors will be orthogonal to each other, and the new basis vectors in each of the \(\{ V_i \} \) will remain orthogonal to the new basis vectors of all
\{ V'_i \} with \(i' \neq i \). We will, consequently, get an orthonormal basis for \(\mathbb{R}^n \). Suppose that this new basis is
\[
\{ u_1, \ldots, u_n \}
\]
We claim that the matrix, \(U \), that transforms this basis to the standard basis of \(\mathbb{R}^n \) is a \textit{unitary matrix} (see the definition of a unitary matrix in 1.13 on page 141). This follows from 1.29 on page 148 and the fact that \(U \) transforms the standard basis of \(\mathbb{R}^n \) (which is orthonormal) into \(\{ u_1, \ldots, u_n \} \).

Now we return to the fact that we are proving a variation of 1.17 on page 142 and we have an expression:
\[
A = UTU^{-1}
\]
where \(T \) is full upper-triangular and \(U \) is unitary. We claim that this implies that \(T \) is Hermitian since
\[
A^H = (UTU^{-1})^H
\]
\[
= (U^{-1})^H T^H U^H
\]
\[
= UT^H U^{-1}
\]
(since \(U \) is unitary)

This implies that \(T = T^H \). Since all of the elements of \(T \) below the main diagonal are 0, this implies that all of the elements above the main diagonal are also 0, and \(T \) is a diagonal matrix.
1. LINEAR ALGEBRA

1.2.3. The Jacobi Method. The most basic problem that we will want to solve is a system of linear equations:

\[Ax = b \]

where \(A \) is a given \(n \times n \) matrix, \(x = (x_0, \ldots, x_{n-1}) \) is the set of unknowns and \(b = (b_0, \ldots, b_{n-1}) \) is a given vector of dimension \(n \). Our method for solving such problems will make use of the matrix \(D(A) \) composed of the diagonal elements of \(A \) (which we now assume are nonvanishing):

\[D(A) = \begin{pmatrix} A_{0,0} & 0 & 0 & \cdots & 0 \\ 0 & A_{2,2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{n-1,n-1} \end{pmatrix} \]

As remarked above, the traditional methods (i.e., Gaussian elimination) for solving this do not lend themselves to easy parallelization. We will, consequently, explore iterative methods for solving this problem. The iterative methods we discuss requires that the \(D \)-matrix is invertible. This is equivalent to the requirement that all of the diagonal elements are nonzero. Assuming that this condition is satisfied, we can rewrite equation (6) in the form

\[D(A)^{-1}Ax = D(A)^{-1}b \]

\[x + (D(A)^{-1}A - I)x = D(A)^{-1}b \]

\[x = (I - D(A)^{-1}A)x + D(A)^{-1}b \]

where \(I \) is an \(n \times n \) identity matrix. We will be interested in the properties of the matrix \(Z(A) = I - D(A)^{-1}A \). The basic iterative method for solving equation (6) is to

1. Guess at a solution \(u^{(0)} = (r_0, \ldots, r_{n-1}) \);
2. Forming a sequence of vectors \(\{u^{(0)}, u^{(1)}, \ldots\} \), where \(u^{(i+1)} = Z(A)u^{(i)} + D(A)^{-1}b \).

Now suppose that the sequence \(\{u^{(0)}, u^{(1)}, \ldots\} \) converges to some vector \(\tilde{u} \). The fact that \(\tilde{u} \) is the limit of this sequence implies that \(\tilde{u} = Z(A)\tilde{u} + D(A)^{-1}b \) — or that \(\tilde{u} \) is a solution of the original system of equations (6). This general method of solving systems of linear equations is called the Jacobi method or the Relaxation Method. The term “relaxation method” came about as a result of an application of linear algebra to numerical solutions of partial differential equations — see the discussion on page 238.

We must, consequently, be able to say whether, and when the sequence \(\{u^{(0)}, u^{(1)}, \ldots\} \) converges. We will use the material in the preceding section on norms of vectors and matrices for this purpose.

Proposition 1.33. Suppose \(A \) is an \(n \times n \) matrix with the property that all of its diagonal elements are nonvanishing. The Jacobi algorithm for solving the linear system

\[Ax = b \]

converges to the same value regardless of starting point \((u^{(0)}) \) if and only if \(\rho(Z(A)) = \mu < 1 \), where \(\rho(Z(A)) \) is the spectral radius defined in 1.13 on page 140.
Note that this result also gives us some idea of how fast the algorithm converges.

Proof. Suppose \(\bar{u} \) is an exact solution to the original linear system. Then equation (8) on page 151 implies that:

\[
\bar{u} = (I - D(A)^{-1}A)\bar{u} + D(A)^{-1}b
\]

Since \(\rho(Z(A)) = \mu < 1 \) it follows that \(\|Z(A)^k\| \to 0 \) as \(k \to \infty \) for any matrix-norm \(\| \cdot \| \) — see 1.14 on page 141. We will compute the amount of error that exists at any given stage of the iteration. The equation of the iteration is

\[
u^{(i+1)} = (I - D(A)^{-1}A)u^{(i)} + D(A)^{-1}b
\]

and if we subtract this from equation (9) above we get

\[
\bar{u} - u^{(i+1)} = (I - D(A)^{-1}A)\bar{u} + D(A)^{-1}b
- (I - D(A)^{-1}A)u^{(i)} + D(A)^{-1}b
= (I - D(A)^{-1}A)(\bar{u} - u^{(i)})
= Z(A)(\bar{u} - u^{(i)})
\]

The upshot of this is that each iteration of the algorithm has the effect of multiplying the error by \(Z(A) \). A simple inductive argument shows that at the end of the \(i \)th iteration

\[
\bar{u} - u^{(i+1)} = Z(A)^i(\bar{u} - u^{(0)})
\]

The conclusion follows from 1.14 on page 141, which implies that \(Z(A)^i \to 0 \) as \(i \to \infty \) if and only if \(\rho(Z(A)) < 1 \). Clearly, if \(Z(A)^i \to 0 \) the error will be killed off as \(i \to \infty \) regardless of how large it was initially. \(\square \)

The following corollary gives us an estimate of the rate of convergence.

Corollary 1.34. The conditions in the proposition above are satisfied if \(\|Z(A)\| = \tau < 1 \) for any matrix-norm \(\| \cdot \| \). If this condition is satisfied then

\[
\|\bar{u} - u^{(i)}\| \leq \tau^{i-1}\|\bar{u} - u^{(0)}\|
\]

where \(\bar{u} \) is an exact solution of the original linear system.

Proof. This is a direct application of equation (11) above:

\[
\bar{u} - u^{(i+1)} = Z(A)^i(\bar{u} - u^{(0)})
\]

\[
\|\bar{u} - u^{(i+1)}\| = \|Z(A)^i(\bar{u} - u^{(0)})\|
\]

\[
\leq \|Z(A)^i\| \cdot \|\bar{u} - u^{(0)}\|
\leq \|Z(A)\|^i \cdot \|\bar{u} - u^{(0)}\|
= \tau^i\|\bar{u} - u^{(0)}\|
\]

\(\square \)

We conclude this section with an example. Let

\[
A = \begin{pmatrix}
4 & 1 & 1 \\
1 & 4 & -1 \\
1 & 1 & 4 \\
\end{pmatrix}
\]
and

\[b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]

Then

\[D(A) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \]

and

\[Z(A) = \begin{pmatrix} 0 & -1/4 & -1/4 \\ -1/4 & 0 & 1/4 \\ -1/4 & -1/4 & 0 \end{pmatrix} \]

so our iteration-step is:

\[u^{(i+1)} = \begin{pmatrix} 0 & -1/4 & -1/4 \\ -1/4 & 0 & 1/4 \\ 1/4 & -1/4 & 0 \end{pmatrix} u^{(i)} + \begin{pmatrix} 1/4 \\ 1/2 \\ 3/4 \end{pmatrix} \]

It is not hard to see that \[\| Z(A) \|_1 = 1/2 \] so the Jacobi method converges for any initial starting point. Set \[u^{(0)} = 0. \] We get:

\[u^{(1)} = \begin{pmatrix} 1/4 \\ 1/2 \\ 3/4 \end{pmatrix} \]

and

\[u^{(2)} = \begin{pmatrix} -1/16 \\ 5/8 \\ 9/16 \end{pmatrix} \]

\[u^{(3)} = \begin{pmatrix} -3/64 \\ 21/32 \\ 39/64 \end{pmatrix} \]

Further computations show that the iteration converges to the solution

\[x = \begin{pmatrix} -1/15 \\ 2/3 \\ 3/5 \end{pmatrix} \]
Exercises.

1.12. Apply the Jacobi method to the system

\[Ax = b \]

where

\[A = \begin{pmatrix} 4 & 0 & 1 \\ 1 & 4 & -1 \\ 1 & 1 & 4 \end{pmatrix} \]

and

\[b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]

1.13. Compute \(D(A) \) and \(Z(A) \) when

\[A = \begin{pmatrix} 4 & 1 & 1 \\ 2 & 5 & 1 \\ 0 & -3 & 10 \end{pmatrix} \]

Can the Jacobi method be used to solve linear systems of the form

\[Ax = b \]

1.2.4. The JOR method. Now we will consider a variation on the Jacobi method. JOR, in this context stands for Jacobi Over-Relaxation. Essentially the JOR method attempts to speed up the convergence of the Jacobi method by modifying it slightly. Given the linear system:

\[Ax = b \]

where \(A \) is a given \(n \times n \) matrix whose diagonal elements are nonvanishing and \(b \) is a given \(n \)-dimensional vector. The Jacobi method solves it by computing the sequence

\[u^{(i+1)} = Z(A)u^{(i)} + D(A)^{-1}b \]

where \(D(A) \) is the matrix of diagonal elements of \(A \) and \(Z(A) = I - D(A)^{-1}A \). In other words, we solve the system of equations by “moving from \(u^{(i)} \) toward \(u^{(i+1)} \).” The basic idea of the JOR method is that:

If motion in this direction leads to a solution, maybe moving further in this direction at each step leads to the solution faster.

We, consequently, replace \(u^{(i)} \) not by \(u^{(i+1)} \) as defined above, but by \((1 - \omega)u^{(i)} + \omega u^{(i+1)}\) when \(\omega = 1 \) we get the Jacobi method exactly. The number \(\omega \) is called the
The conditions in the proposition above are satisfied if

1. If the Jacobi method converges, then the JOR method converges

Let

This is a result of the fact that the eigenvalues of

The proof of this is almost identical to that of 1.34 on page 152.

We must, consequently, adjust \(\omega \) in order to make

and to minimize

\(\omega \tau^{i-1} \|D(\omega)A\|_2 u^{(0)} + D(\omega)A \|_2 \).

PROPOSITION 1.36. If the Jacobi method converges, then the JOR method converges for \(0 < \omega \leq 1 \).

PROOF. This is a result of the fact that the eigenvalues of \((I - \omega D(A)^{-1}A)\) are closely related to those of \(Z(A)\) because \((I - \omega D(A)^{-1}A) = \omega Z(A) + (1 - \omega)I\)

If \(\theta_j \) is an eigenvalue of \((I - \omega D(A)^{-1}A)\) then \(\theta_j = \omega \lambda_j + 1 - \omega \), where \(\lambda_j \) is an eigenvalue of \(Z(A)\).

If \(\lambda_j = re^{\theta j} \), then

\[
|\theta_j|^2 = \omega^2 r^2 + 2\omega r \cos(1 - \omega) + (1 - \omega)^2
\]

\[
\leq (\omega r + 1 - \omega)^2 < 1
\]

The main significance of the JOR method is that, with a suitable choice of \(\omega \), the JOR method will converge under circumstances where the Jacobi method does not (the preceding result implies that it converges at least as often).

THEOREM 1.37. Let \(A \) be a positive definite matrix with nonvanishing diagonal elements such that the associated matrix \(Z(A)\) has spectral radius \(> 1 \). Then there exists a number \(\alpha \) such that \(0 < \alpha < 1 \) such that the JOR method converges for all values of \(\omega \) such that \(0 < \omega < \alpha \).

Let \(\lambda_{min} \) be the smallest eigenvalue of \(Z(A)\) (i.e., the one with the largest magnitude). Then

\[
\alpha = \frac{2}{1 - \lambda_{min}} = \frac{2}{1 + \rho(Z(A))}
\]
PROOF. This proof will be in several steps. We first note that all of the diagonal elements of A must be positive.

1. If $0 < \omega < \alpha = 2/(1 - \lambda_{\text{min}})$ then the matrix $V = 2\omega^{-1}D(A) - A$ is positive definite.

Proof of claim: Since the diagonal elements of A are positive, there exists a matrix $D^{1/2}$ such that $(D^{1/2})^{2} = D(A)$. V is positive definite if and only if $D^{-1/2}VD^{-1/2}$ is positive definite. We have $D^{-1/2}VD^{-1/2} = 2\omega^{-1}I - D^{-1/2}AD^{-1/2}$. Now we express this in terms of $Z(A)$:

$$D^{1/2}Z(A)D^{-1/2} = D^{1/2}ID^{-1/2} - D^{1/2}D(A)AD^{-1/2}$$

so

$$D^{-1/2}VD^{-1/2} = (2\omega^{-1} - 1)I + D^{1/2}Z(A)D^{-1/2}$$

and this matrix will also be positive definite if and only if $V = 2\omega^{-1}D(A) - A$ is positive definite. But the eigenvalues of this matrix are

$$2\omega^{-1} - 1 + \mu_i$$

(see exercise 1.8 on page 147 and its solution on page 435) and these are the same as the eigenvalues of $Z(A)$ — see 1.16 on page 142. The matrix V is positive definite if and only if these eigenvalues are all positive (see 1.22 on page 144, and 1.18 on page 143). This is true if and only if $2\omega^{-1} - 1 > |\mu_i|$ for all i, or $\omega < 2/(1 - \lambda_{\text{min}})$.

2. If $V = 2\omega^{-1}D(A) - A$ is positive definite, then $\rho(I - \omega D(A)^{-1}A) < 1$, so that the JOR method converges (by 1.35 on page 155).

Since A is positive definite, it has a square root (by 1.23 on page 144) — we call this square root $A^{1/2}$. We will prove that $\rho(A^{1/2}(I - \omega D(A)^{-1}A)^{-1}A^{1/2}) < 1$, which will imply the claim since spectral radii of similar matrices are equal (1.16 on page 142).

Now $R = A^{1/2}(I - \omega D(A)^{-1}A)^{-1}A^{1/2} = I - \omega A^{1/2}D(A)^{-1}A^{1/2}. Now we form RR^H:

$$RR^H = (I - \omega A^{1/2}D(A)^{-1}A^{1/2})^H(I - \omega A^{1/2}D(A)^{-1}A^{1/2})$$

$$= I - 2\omega A^{1/2}D(A)^{-1}A^{1/2} + \omega^2 A^{1/2}D(A)^{-1}AD(A)^{-1}A^{1/2}$$

$$= I - \omega^2 A^{1/2}D(A)^{-1}V D(A)^{-1}A^{1/2}$$

$$= I - M$$

where $V = 2\omega^{-1}D(A) - A$. This matrix is positive definite (product of an invertible matrix by its Hermitian transpose — see exercise 1.9 on page 147 and its solution on page 435). It follows that the eigenvalues of $M = \omega^2 A^{1/2}D(A)^{-1}V D(A)^{-1}A^{1/2}$ must be < 1 (since the result of subtracting them from 1 is still positive). But M is also positive definite, since it is of the form FVF^H and V is positive definite (see exercise 1.10 on page 147 and its solution on page 436). This means that the eigenvalues of $M = \omega^2 A^{1/2}D(A)^{-1}V D(A)^{-1}A^{1/2}$ lie between 0 and 1. We conclude that the eigenvalues of $RR^H = I - M$ also lie between 0 and 1. This means that the eigenvalues of $R = A^{1/2}(I - \omega D(A)^{-1}A)^{-1}A^{1/2}$ lie between 0 and 1 and the conclusion follows. \(\square\)
1.2.5. The SOR and Consistently Ordered Methods. We can combine the iterative methods described above with the Gauss-Seidel method. The Gauss-Seidel method performs iteration as described above with one important difference:

In the computation of \(u^{(i+1)} \) from \(u^{(i)} \) in equation (12), computed values for \(u^{(i+1)} \) are substituted for values in \(u^{(i)} \) as soon as they are available during the course of the computation.

In other words, assume we are computing \(u^{(i)} \) sequentially by computing \(u_1^{(i+1)} \), \(u_2^{(i+1)} \), and so forth. The regular Jacobi method or the JOR method involves performing these computations in a straightforward way. The Gauss-Seidel method involves computing \(u_1^{(i+1)} \), and immediately setting \(u_1^{(i)} ← u_1^{(i+1)} \) before doing any other computations. When we reach the point of computing \(u_2^{(i+1)} \), it will already contain the computed value of \(u_1^{(i+1)} \). This technique is easily implemented on a sequential computer, but it is not clear how to implement it in parallel.

The combination of the Gauss-Seidel method and overrelaxation is called the SOR method. The term SOR means successive overrelaxation. Experience and theoretical results show that it almost always converges faster than the JOR method. The result showing that the JOR method converges for \(A \) a positive definite matrix (theorem 1.37 on page 155) also applies for the SOR method.

In order to write down an equation for this iteration-scheme, we have to consider what it means to use \(u_j^{(i+1)} \) for \(0 ≤ j < k \) when we are computing the \(k \)th entry of \(u_k^{(i+1)} \). We are essentially multiplying \(u^{(i)} \) by a matrix \((Z(A)) \) in order to get \(u^{(i+1)} \). When computing the \(k \)th entry of \(u^{(i+1)} \), the entries of the matrix \(Z(A) \) that enter into this entry are the entries whose column-number is strictly less than their row-number. In other words, they are the lower triangular entries of the matrix. It amounts to using the following iteration-scheme:

\[
\begin{align*}
\omega (L(A)u^{(i+1)} + U(A)u^{(i)} + D(A)^{-1}b) + (1 - \omega)u^{(i)} = \bar{u}^{(0)}
\end{align*}
\]

Here \(L(A) \) is the lower-triangular portion of \(Z(A) \) and \(U(A) \) is the upper-triangular portion.

\[
\begin{align*}
u^{(i+1)} &= L_\omega u^{(i)} + (1 - \omega L(A))^{-1}\omega D(A)^{-1}b
\end{align*}
\]

where \(L_\omega = (I - \omega L(A))^{-1}(\omega U + (1 - \omega)L)I \). As before, we have the following criterion for the convergence of the SOR method:

Theorem 1.38. The SOR iteration-scheme for solving the linear system

\[
Au = b
\]

(where \(A \) has nonvanishing diagonal elements) converges if \(\| L_\omega \| = \tau < 1 \) for any matrix-norm \(\| \cdot \| \). In this case

\[
\| \bar{u} - u^{(i)} \| ≤ \tau^{i-1} \| \bar{u} - u^{(0)} \|
\]

where \(\bar{u} \) is an exact solution of the original linear system.

Proof. As before, the proof of this is almost identical to that of 1.34 on page 152. ∎
THEOREM 1.39. (See [80]) The spectral radius of L_ω satisfies
\[\rho(L_\omega) \geq |\omega - 1| \]
In addition, if the SOR method converges, then
\[0 < \omega < 2 \]

PROOF. This follows from the fact that the determinant of a matrix is equal to the product of the eigenvalues — see 1.14 on page 141.
\[
\det L_\omega = \det((I - \omega L)^{-1}(\omega U + (1 - \omega)I)) = (\det(I - \omega L))^{-1} \det(\omega U + (1 - \omega)I) = \det(\omega U + (1 - \omega)I) = (1 - \omega)^n
\]
since the determinant of a matrix that is the sum of a lower or upper triangular matrix and the identity matrix is 1. It follows that:
\[
\rho(L_\omega) \geq (|\omega - 1|^n)^{1/n} = |1 - \omega|
\]

\square

Experiment and theory show that this method tends to converge twice as rapidly as the basic Jacobi method — 1.42 on page 160 computes the spectral radius $\rho(L_\omega)$ if the matrix A satisfies a condition to be described below.

Unfortunately, the SOR method as presented above doesn’t lend itself to parallelization. Fortunately, it is possible to modify the SOR method in a way that does lend itself to parallelization.

DEFINITION 1.40. Let A be an $n \times n$ matrix. Then:
1. two integers $0 \leq i, j \leq n$ are associated if $A_{ij} \neq 0$ or $A_{ji} \neq 0$;
2. Let $\Sigma = \{1, \ldots, n\}$, the set of numbers from 1 to n and let S_1, S_2, \ldots, S_k be disjoint subsets of Σ such that
\[
\bigcup_{i=1}^{k} S_i = \Sigma
\]
Then the partition S_1, S_2, \ldots, S_k of Σ is
a. an ordering of A if
i. $1 \in S_1$ and for any i, j contained in the same set S_t, i and j are not associated — i.e., $A_{ij} = A_{ji} = 0$.
ii. If j is the lowest number in
\[
\Sigma \setminus \bigcup_{i=1}^{i} S_i
\]
then $j \in S_{i+1}$ for all $1 \leq i < k$.
b. a consistent ordering of A if for any pair of associated integers $0 \leq i, j \leq n$, such that $i \in S_t$,
 • $j \in S_{t+1}$ if $j > i$;
 • $j \in S_{t-1}$ if $j < i$.

3. A vector

\[\gamma = \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix} \]

will be called a consistent ordering vector of a matrix \(A \) if

a. \(\gamma_i - \gamma_j = 1 \) if \(i \) and \(j \) are associated and \(i > j \);

b. \(\gamma_i - \gamma_j = -1 \) if \(i \) and \(j \) are associated and \(i < j \);

Note that every matrix has an ordering: we can just set \(S_i = \{i\} \). It is not true that every matrix has a consistent ordering.

Consistent orderings, and consistent ordering vectors are closely related: the set \(S_i \) in a consistent ordering is the set of \(j \) such that \(\gamma_j = i \), for a consistent ordering vector.

An ordering for a matrix is important because it allows us to parallelize the SOR method:

Proposition 1.41. Suppose \(A \) is an \(n \times n \) matrix equipped with an ordering \(\{S_1, \ldots, S_t\} \), and consider the following iteration procedure:

\[
\begin{align*}
\text{for } j = 1 \text{ to } t \text{ do} \\
& \text{for all } k \text{ such that } k \in S_j \\
& \text{Compute entries of } u^{(i+1)}_k \\
& \text{Set } u^{(i)}_k \leftarrow u^{(i+1)}_k \\
& \text{endfor} \\
& \text{endfor}
\end{align*}
\]

This procedure is equivalent to the SOR method applied to a version of the linear system

\[Au = b \]

in which the coordinates have been re-numbered in some way. If the ordering of \(A \) was consistent, then the iteration procedure above is exactly equivalent to the SOR algorithm\(^3\).

In other words, instead of using computed values of \(u^{(i+1)} \) as soon as they are available, we may compute all components for \(u^{(i+1)} \) whose subscripts are in \(S_1 \), then use these values in computing other components whose subscripts are in \(S_2 \), etc. Each individual “phase” of the computation can be done in parallel. In many applications, it is possible to use only two phases (i.e., the ordering only has sets \(S_1 \) and \(S_2 \)).

Re-numbering the coordinates of the linear system

\[Au = b \]

does not change the solution. It is as if we solve the system

\[B Au = B b \]

where \(B \) is some permutation-matrix\(^4\). The solution is

\[u = A^{-1} B^{-1} B b = A^{-1} b \]

\(^3\) I.e., without re-numbering the coordinates.

\(^4\) A matrix with exactly one 1 in each row and column, and all other entries equal to 0.
— the same solution as before. Since the computations are being carried out in a different order than in equation (13) on page 157, the rate of convergence might be different.

Proof. We will only give an intuitive argument. The definition of an ordering in 1.40 on page 158 implies that distinct elements \(r, r \) in the same set \(S_i \) are independent. This means that, in the formula (equation (13) on page 157) for \(u^{(i+1)} \) in terms of \(u^{(i)} \),

1. the equation for \(u_r^{(i+1)} \) does not contain \(u_s^{(i+1)} \) on the right.
2. the equation for \(u_s^{(i+1)} \) does not contain \(u_r^{(i+1)} \) on the right.

It follows that we can compute \(u_r^{(i+1)} \) and \(u_s^{(i+1)} \) simultaneously. The re-numbering of the coordinates comes about because we might do some computations in a different order than equation (13) would have done them. For instance, suppose we have an ordering with \(S_1 = \{1, 2, 4\} \), and \(S_2 = \{3, 5\} \), and suppose that component 4 is dependent upon component 3 — this does not violate our definition of an ordering. The original SOR algorithm would have computed component 3 before component 4 and may have gotten a different result than the algorithm based upon our ordering.

It is possible to show (see [174]) that if the ordering is consistent, the permutation \(B \) that occurs in the re-numbering of the coordinates has the property that it doesn’t map any element of the lower triangular half of \(A \) into the upper triangular half, and vice-versa. Consequently, the phenomena described in the example above will not occur. \(\Box \)

The importance of a consistent ordering of a matrix\(^5\) is that it is possible to give a explicit formula for the optimal relaxation-coefficient for such a matrix:

Theorem 1.42. If the matrix \(A \) is consistently-ordered, in the sense defined in 1.40 on page 158, then the SOR or the consistently-ordered iteration procedures for solving the system

\[
Ax = b
\]

both converge if \(\rho(Z(A)) < 1 \). In both cases the optimum relaxation coefficient to use is

\[
\omega = \frac{2}{1 + \sqrt{1 - \rho(Z(A))^2}}
\]

where (as usual) \(Z(A) = I - D(A)^{-1}A \), and \(D(A) \) is the matrix of diagonal elements of \(A \). If the relaxation coefficient has this value, then the spectral radius of the effective linear transformation used in the SOR (or consistently-ordered) iteration scheme is \(\rho(L_\omega) = \omega - 1 \).

The last statement gives us a good measure of the rate of convergence of the SOR method (via 1.38 on page 157 and the fact that the 2-norm of a symmetric matrix is equal to the spectral radius).

We can expand \(\omega \) into a Taylor series to get some idea of its size:

\[
\omega = 1 + \frac{\mu^2}{4} + \frac{\mu^4}{8} + O(\mu^6)
\]

\(^5\)Besides the fact that it produces computations identical to the SOR algorithm.
and this results in a value of the effective spectral radius of the matrix of
\[\frac{\mu^2}{4} + \frac{\mu^4}{8} + O(\mu^6) \]

The proof of 1.42 is beyond the scope of this book — see chapter 6 of [174] for proofs. It is interesting that this formula does not hold for matrices that are not consistently ordered — [174] describes an extensive theory of what happens in such cases.

We will give a criterion for when a consistent ordering scheme exists for a given matrix. We have to make a definition first:

Definition 1.43. Let \(G \) be an undirected graph with \(n \) vertices. A coloring of \(G \) is an assignment of colors to the vertices of \(G \) in such a way that no two adjacent vertices have the same color.

Given a coloring of \(G \) with colors \(\{c_1, \ldots, c_k\} \), we can define the associated coloring graph to be a graph with vertices in a 1-1 correspondence with the colors \(\{c_1, \ldots, c_k\} \) and an edge between two vertices \(c_1 \) and \(c_2 \) if any vertex (of \(G \)) colored with color \(c_1 \) is adjacent to any vertex that is colored with color \(c_2 \).

A linear coloring of \(G \) is a coloring whose associated coloring graph is a linear array of vertices (i.e., it consists of a single path, as in figure 5.3).

Proposition 1.44. The operation of finding a consistent-ordering of a matrix can be regarded as equivalent to solving a kind of graph-coloring problem:

Given a square matrix, \(A \), construct a graph, \(G \), with one vertex for each row (or column) of the matrix, and an edge connecting a vertex representing row \(i \) to the vertex representing row \(j \) if \(j \neq i \) and \(A_{ij} \neq 0 \).

Then:

1. the ordering schemes of \(A \) are in a \(1 \rightarrow 1 \) correspondence with the colorings of \(G \).
2. the consistent ordering schemes of \(A \) are in a \(1 \rightarrow 1 \) correspondence with the linear colorings of the graph \(G \).

Proof. Statement 1: Define the sets \(\{S_j\} \) to be the sets of vertices of \(G \) with the same color (i.e., set \(S_1 \) might be the set of “green” vertices, etc.). Now arrange these sets so as to satisfy the second condition of 1.40 on page 158. This essentially amounts to picking the smallest element of each set and arranging the sets so that these smallest elements are in ascending order as we go from 1 to the largest number.

Statement 2: Suppose \(\{S_1, \ldots, S_k\} \) is a consistent ordering of the matrix. We will color vertex \(i \) of \(G \) with color \(S_j \) where \(S_j \) is the set containing \(i \). The condition:

\[j \in S_{t+1} \text{ if } j > i; \]
\[j \in S_{t-1} \text{ if } j < i; \]

implies that the associated coloring graph is linear. It implies that vertex \(i \) in the coloring graph is only adjacent to vertices \(i - 1 \) and \(i + 1 \) (if they exist).

Conversely, given a linear coloring, we number the vertices of the coloring graph by assigning to a vertex (and its associated color) its distance from one end.
1. For each color c_i arbitrarily order the rows with that color.
2. Associate with a row i the pair (c_j, o_i), where c_j is the color of row i, and o_i is the ordinal position of this row in the set of all rows with the same color.
3. Order the rows lexicographically by the pairs (c_j, o_i).
4. Define the permutation π to map row i to its ordinal position in the ordering of all of the rows defined in the previous line.

It is not hard to verify that, after the permutation of the rows and columns of the matrix (or re-numbering of the coordinates in the original problem) that the matrix will be consistently-ordered with ordering vector whose value on a given coordinate is the number of the color of that coordinate. \qed

Here is an example of a consistently ordered matrix: Let

$$ A = \begin{pmatrix} 4 & 0 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & 0 & 4 \end{pmatrix} $$

If we let $S_1 = \{1\}$, $S_2 = \{2, 4\}$, and $S_3 = \{3\}$, we have a consistent ordering of A. The vector

$$ \gamma = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix} $$

is a consistent ordering vector for this matrix. The graph for this matrix is in figure 5.4.

We conclude this section with an algorithm for determining whether a matrix has a consistent ordering (so that we can use the formula in 1.42 on page 160 to compute the optimum relaxation-factor). The algorithm is constructive in the sense that it actually finds an ordering if it exists. It is due to Young (see [174]):

Algorithm 1.45. Let A be an $n \times n$ matrix. It is possible to determine whether A has a consistent ordering via the following sequence of steps:

Data: vectors $\{\gamma_i\}$ and $\{\bar{\gamma}_i\}$

sets D initially $\{1\}$, $T = \{1\}$
1. LINEAR ALGEBRA 163

Boolean variable Cons = TRUE

\[\gamma_1 \leftarrow 1, \bar{\gamma}_1 \leftarrow 1 \]
for \(j \leftarrow 2 \) to \(n \) do
 if \(A_{1,j} \neq 0 \) or \(A_{j,1} \neq 0 \) then
 \(\gamma_j \leftarrow 2, \bar{\gamma}_j \leftarrow 2 \)
 \(D \leftarrow D \cup \{ j \} \)
 \(T \leftarrow T \cup \{ j \} \)
 endfor
\(D \leftarrow D \setminus \{ 1 \} \)
while \(T \neq \{ 1, \ldots, n \} \)
 if \(D \neq \emptyset \) then
 \(i \leftarrow \text{Minimal element of} \ D \)
 else
 \(i \leftarrow \text{Minimal element of} \{ 1, \ldots, n \} \setminus T \)
 endif
 if \(j \notin T \) then
 \(D \leftarrow D \cup \{ j \} \)
 \(\bar{\gamma}_j \leftarrow 1 - \bar{\gamma}_i \)
 if \(j > i \) then
 \(\gamma_j \leftarrow \gamma_i + 1 \)
 else
 \(\gamma_j \leftarrow \gamma_i - 1 \)
 endif
 else \(\{ j \in T \} \)
 if \(\bar{\gamma}_j \neq 1 - \bar{\gamma}_i \) then
 Cons \leftarrow \text{FALSE}
 Exit
 endif
 if \(j > i \) then
 if \(\gamma_j \neq \gamma_i + 1 \) then
 Cons \leftarrow \text{FALSE}
 Exit
 endif
 else
 if \(\gamma_j \neq \gamma_i - 1 \) then
 Cons \leftarrow \text{FALSE}
 Exit
 endif
 endif
 endif
endwhile

The variable Cons determines whether the matrix \(A \) has a consistent ordering.
If it is TRUE at the end of the algorithm, the vector \(\gamma \) is a consistent ordering vector. This determines a consistent ordering, via the comment following 1.40, on page 159.

1.2.6. Discussion. We have only scratched the surface in our treatment of the theory of iterative algorithms for solving systems of linear equations. There are a
number of important issues in finding parallel versions of these algorithms. For instance, the execution-time of such an algorithm depends upon:

1. The number of complete iterations required to achieve a desired degree of accuracy. This usually depends upon the norm or spectral radius of some matrix.
2. The number of parallel steps required to implement one complete iteration of an iteration-scheme. This depends upon the number of sets in an ordering (or consistent ordering) of a matrix.

In many cases the fastest parallel algorithm is the one that uses an ordering with the smallest number of sets in an ordering — even though that may lead to an iteration-matrix with a larger norm (than some alternative).

The reader may have noticed that we have required that the diagonal elements of the matrix \(A \) be nonvanishing throughout this chapter. This is a very rigid condition, and we can eliminate it to some extent. The result is known at the Richardson iteration scheme. It requires that we have some matrix \(B \) that satisfies the conditions:

1. \(B^{-1} \) is easy to compute exactly;
2. The spectral radius of \(I - B^{-1}A \) is small (or at least < 1);

We develop this iteration-scheme via the following sequence of steps

\[
\begin{align*}
Av &= b \\
(A - B)v + Bv &= b \\
B^{-1}(A - B)v + v &= B^{-1}b \\
v &= B^{-1}(B - A)v + B^{-1}b \\
v &= (I - B^{-1}A)v + B^{-1}b
\end{align*}
\]

So our iteration-scheme is:

\[
v^{(i+1)} = (I - B^{-1}A)v^{(i)} + B^{-1}b
\]

Note that we really only need to know \(B^{-1} \) in order to carry this out. The main result of the Pan-Reif matrix inversion algorithm (in the next section) gives an estimate for \(B^{-1} \):

\[
B^{-1} = A^H / (\|A\|_1 \cdot \|A\|_\infty)
\]

(this is a slight re-phrasing of 1.53 on page 169). The results of that section show that \(O(\log n) \) parallel iterations of this algorithm are required to give a desired degree of accuracy (if \(A \) is an invertible matrix). In general SOR algorithm is much faster than this scheme if it can be used.

Even the theory of consistent ordering schemes is well-developed. There are group-iteration schemes, and generalized consistent ordering schemes. In these cases it is also possible to compute the optimal relaxation coefficient. See [174] for more details.
1. LINEAR ALGEBRA

EXERCISES.

1.14. Let

\[A = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 0 & 4 \end{pmatrix} \]

Compute the spectral radius of this matrix. Will the SOR method converge in the problem

\[Ax = \begin{pmatrix} 2 \\ 3 \\ -5 \\ 1 \end{pmatrix} \]

If so compute the optimum relaxation coefficient in the SOR method.

1.15. Show that a matrix that is consistently ordered has an ordering (non-consistent) that has only two sets. This means that the parallel version of the SOR algorithm (1.41 on page 159) has only two phases. (Hint: use 1.44 on page 161).

1.3. Power-series methods: the Pan-Reif Algorithm.

1.3.1. Introduction. The reader might have wondered what we do in the case where the diagonal elements of a matrix vanish, or the conditions on spectral radius are not satisfied.

In this section we present a variation on the iterative methods described above. The results in this section are of more theoretical than practical value since they require a larger number of processors than the iterative methods, and inversion of a matrix is generally not the most numerically stable method for solving a linear system.

In order to understand the algorithm for matrix inversion, temporarily forget that we are trying to invert a matrix — just assume we are inverting a number. Suppose we want to invert a number \(u \) using a power series. Recall the well-known power-series for the inverse of \(1 - x \):

\[1 + x + x^2 + x^3 \cdots \]

We can use this power series to compute \(u^{-1} \) if we start with an estimate \(a \) for \(u^{-1} \) since \(u^{-1} = u^{-1}a^{-1}a = (au)^{-1}a = (1 - (1 - au))^{-1}a \), where we use the power-series to calculate \((1 - (1 - au))^{-1} \). If \(a \) is a good estimate for the inverse of \(u \), then \(au \) will be close to 1 and \(1 - au \) will be close to 0 so that the power-series for \((1 - (1 - au))^{-1} \) will converge.

It turns out that all of this can be made to work for matrices. In order to reformulate it for matrices, we must first consider what it means for a power-series of matrices to converge. The simplest way for a power-series of matrices to converge is for all but a finite number of terms to vanish. For instance:
Proposition 1.46. Let \(M = (M_{ij}) \) be an \(n \times n \) lower triangular matrix. This is a matrix for which \(M_{ik} = 0 \) whenever \(i \geq j \). Then \(M^n = 0 \), and

\[
(I - M)^{-1} = I + M + M^2 + \cdots + M^{n-1}
\]

Proof. We prove that \(M^n = 0 \) by induction on \(n \). It is easy to verify the result in the case where \(n = 2 \). Suppose the result is true for all \(k \times k \), lower triangular matrices. Given a \((k + 1) \times (k + 1) \) lower triangular matrix, \(M \), we note that:

- Its first \(k \) rows and columns form a \(k \times k \) lower triangular matrix, \(M' \).
- If we multiply \(M \) by any other \((k + 1) \times (k + 1) \) lower triangular matrix, \(L \) with its \(k \times k \) lower-triangular submatrix, \(L' \), we note that the product is of the form:

\[
\begin{pmatrix}
M'L' & 0 \\
E & 0
\end{pmatrix}
\]

where the 0 in the upper right position represents a column of \(k \) zeros, and \(E \) represents a last row of \(k \) elements.

It is not hard to see that \(M^k \) will be of the form

\[
\begin{pmatrix}
0 & 0 \\
E & 0
\end{pmatrix}
\]
i.e., it will only have a single row with nonzero elements — the last. One further multiplication of this by \(M \) will kill off all of the elements.

The remaining statement follows by direct computation:

\[
(I - M)(I + M + M^2 + \cdots + M^{n-1}) = I - M^n = I
\]

\(\square \)

In somewhat greater generality:

Corollary 1.47. Let \(A \) be an \(n \times n \) matrix of the form

\[
A = D - L
\]

where \(D \) is a diagonal matrix with all diagonal entries nonzero, and \(L \) is a lower-triangular matrix. Then

\[
D^{-1} = \begin{pmatrix}
a_{11}^{-1} & 0 & \cdots & 0 \\
0 & a_{22}^{-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}^{-1}
\end{pmatrix}
\]

and

\[
A^{-1} = D^{-1}(I + (D^{-1}L) + \cdots + (D^{-1}L)^{n-1})
\]

Now we give a fast algorithm for adding up these power series:

Proposition 1.48. Let \(Z_k = \prod_{h=0}^{k-1} (I + R^h) \). Then \(Z_k = \sum_{i=0}^{2^k-1} R^i \).

Proof. This follows by induction on \(k \) — the result is clearly true in the case where \(k = 1 \). Now suppose the result is true for a given value of \(k \) — we will prove
it for the next higher value. Note that $Z_{k+1} = Z_k(I + R^{2^k})$. But this is equal to

\[
(I + R^{2^k}) \sum_{i=0}^{2^k-1} R^i = \sum_{i=0}^{2^k-1} R^i + R^{2^k} \sum_{i=0}^{2^k-1} R^i
\]

\[
= \sum_{i=0}^{2^k-1} R^i + \sum_{i=0}^{2^k-1} R^{i+2^k}
\]

\[
= \sum_{i=0}^{2^{k+1}-1} R^i
\]

\[\square\]

Corollary 1.49. Let M be an $n \times n$ matrix, all of whose entries vanish above the main diagonal, and such that M has an inverse. Then there is a SIMD-parallel algorithm for computing M^{-1} in $O(\lg^2 n)$ time using $n^{2.376}$ processors.

This algorithm first appeared in [126] and [67]. See [68] for related algorithms.

Proof. We use 1.46, 1.47 and 1.48 in a straightforward way. The first two results imply that M^{-1} is equal to a suitable power-series of matrices, with only n nonzero terms, and the last result gives us a way to sum this power-series in $\lg n$ steps. The sum is a product of terms that each equal the identity matrix plus an iterated square of an $n \times n$ matrix. Computing this square requires $O(\lg n)$ time, using $n^{2.376}$ processors, by 1.2 on page 137. \[\square\]

Now we will consider the question of how one finds an inverse of an arbitrary invertible matrix. In general, we cannot assume that some finite power of part of a matrix will vanish. We must be able to handle power series of matrices that converge more slowly. We need to define a measure of the size of a matrix (so we can easily quantify the statement that the terms of a power-series of matrices approach 0, for instance).

1.3.2. The main algorithm. Now we are in a position to discuss the Pan-Reif algorithm. Throughout this section, we will have a fixed $n \times n$ matrix, A. We will assume that A is invertible.

Definition 1.50. The following notation will be used throughout this section:

1. If B is a matrix $R(B)$ is defined to be $I - BA$;
2. A matrix B will be called a sufficiently good estimate for the inverse of A if $\|R(B)\| = u(B) < 1$.

Now suppose A is a nonsingular matrix, and B is a sufficiently good estimate for the inverse (with respect to some matrix-norm) of A (we will show how to get such an estimate later). Write $A^{-1} = A^{-1}B^{-1}B = (BA)^{-1}B = (I - R(B))^{-1}B$. We will use a power series expansion for $(I - R(B))^{-1}$ — the fact that B was a sufficiently good estimate for the inverse of A will imply that the series converges (with respect to the same matrix-norm).

The following results apply to any matrix-norms:

Proposition 1.51. Suppose that B is a sufficiently close estimate for the inverse of A. Then the power series $(I + R(B) + R(B)^2 + \cdots)B$ converges to the inverse of A. In
The inequalities in the remark above imply that to add up this power series. We apply this result

\[\|A^{-1} - S_k\| \leq \frac{\|B\|u(B)^k}{(1 - u(B))} \]

which tends to 0 as \(k \) goes to \(\infty \).

Proof. The inequalities in the remark above imply that \(\|R(B)^i\| \leq \|R(B)\|^i \) and \(\|S_k - S_k'\| \) (where \(k > k' \)) is \(\leq \|B\|(u(B)^k + \cdots + u(B)^{k'}) \leq \|B\|u(B)^k(1 + u(B) + u(B)^2 + \cdots) = \|B\|u(B)^k/(1 - u(B)) \) (we are making use of the fact that \(u(B) < 1 \) here). This tends to 0 as \(k' \) and \(k \) tend to 0 so the series converges (it isn’t hard to see that the series will converge if the norms of the partial sums converge — this implies that the result of applying the matrix to any vector converges). Now \(A^{-1} - S_k = (R(B)^k + \cdots)B = R(B)^k(I + R(B) + R(B)^2 + \cdots)B \). The second statement is clear. \(\square \)

We can use 1.48 on page 166 to add up this power series. We apply this result by setting \(B_k^r = Z_k \) and \(R(B) = R \).

It follows that

\[\|A^{-1} - B_k^r\| \leq \frac{\|B\|u(B)^{2k}}{(1 - u(B))} \]

We will show that the series converges to an accurate estimate of \(A^{-1} \) in \(O(\log n) \) steps. We need to know something about the value of \(u(B) \). It turns out that this value will depend upon \(n \) — in fact it will increase towards 1 as \(n \) goes to 0 — we consequently need to know that it doesn’t increase towards 1 too rapidly. It will be proved later in this section that:

Fact: \(u(B) = 1 - 1/n^{O(1)} \) as \(n \to \infty \), \(\|\log \|B\|\| \leq an^\beta \).

Proposition 1.52. Let \(a \) be such that \(u(B) \leq 1 - 1/n^a \) and assume the two facts listed above and that \(r \) bits of precision are desired in the computation of \(A^{-1} \). Then \(B \cdot B_k^r \) is a sufficiently close estimate of \(A^{-1} \), where \(an^a \log(n) + r + an^a + \beta \leq 2^k \). It follows that \(O(\log n) \) terms in the computation of \(\prod_{k=0}^{k-1} (I + R(B)^{2k}) \) suffice to compute \(A^{-1} \) to the desired degree of accuracy.

Proof. We want

\[\|A^{-1} - B_k^r\| \leq \frac{\|B\|u(B)^{2k}}{(1 - u(B))} \leq 2^{-r} \]

Taking the logarithm gives

\[\|\log \|B\|| + 2^k \log(u(B)) - \log(1 - u(B)) \leq -r \]

The second fact implies that this will be satisfied if \(2^k \log(u(B)) - \log(1 - u(B)) \leq -(r + an^\beta) \). The first fact implies that this inequality will be satisfied if we have

\[2^k \left(1 - \frac{1}{n^a}\right) - \log \left(\frac{1}{n^a}\right) = 2^k \log \left(1 - \frac{1}{n^a}\right) + a \log(n) \leq -(r + an^\beta) \]

Now substituting the well-known power series \(\log(1 - g) = -g - g^2/2 - g^3/3 \cdots \)

gives

\[2^k(-1/n^a - 1/2n^{2a} - 1/3n^{3a} \cdots) + a \log(n) \leq -(r + an^\beta) \]. This inequality will be satisfied if the following one is satisfied (where we have replaced the power series by a strictly greater one): \(2^k(-1/n^a) + a \log(n) \leq -(r + an^\beta) \).
Rearranging terms gives \(a \lg(n) + r + an^\beta \leq 2^k/n^\alpha \) or \(an^\alpha \lg(n) + r + an^{\alpha+\beta} \leq 2^k \), which proves the result. \(\square \)

Now that we have some idea of how the power series converges, we can state the most remarkable part of the work of Pan and Reif — their estimate for the inverse of \(A \). This estimate is given by:

1.53. **Estimate for** \(A^{-1} \):

\[
B = A^H / (\| A \|_1 \cdot \| A \|_\infty)
\]

It is remarkable that this fairly simple formula gives an estimate for the inverse of an arbitrary nonsingular matrix. Basically, the matrix \(R(B) \) will play the part of the matrix \(Z(A) \) in the iteration-methods of the previous sections. One difference between the present results and the iteration methods, is that the present scheme converges *much more slowly* than the iteration-schemes discussed above. We must consequently, use many more processors in the computations — enough processors to be able to perform multiple iterations in parallel, as in 1.48.

Now we will work out an example to give some idea of how this algorithm works:

Suppose our initial matrix is

\[
A = \begin{pmatrix}
1 & 2 & 3 & 5 \\
3 & 0 & 1 & 5 \\
0 & 1 & 3 & 1 \\
5 & 0 & 0 & 3
\end{pmatrix}
\]

Then our estimate for the inverse of \(A \) is:

\[
B = \frac{A^H}{\| A \|_1 \cdot \| A \|_\infty} = \begin{pmatrix}
0.0065 & 0.0195 & 0 & 0.0325 \\
0.0130 & 0 & 0.065 & 0 \\
0.0195 & 0.065 & 0.0195 & 0 \\
0.0325 & 0.0325 & 0.065 & 0.0195
\end{pmatrix}
\]

and

\[
R(B) = I - BA = \begin{pmatrix}
0.7727 & -0.0130 & -0.0390 & -0.2273 \\
-0.0130 & 0.9675 & -0.0584 & -0.0714 \\
-0.0390 & -0.0584 & 0.8766 & -0.1494 \\
-0.2273 & -0.0714 & -0.1494 & 0.6104
\end{pmatrix}
\]

The 2-norm of \(R(B) \) turns out to be 0.9965 (this quantity is not easily computed, incidentally), so the power-series will converge. The easily computed norms are given by \(\| R(B) \|_1 = 1.1234 \) and \(\| R(B) \|_\infty = 1.1234 \), so they give no indication of whether the series will converge.

Now we compute the \(B_{13}^* \) — essentially we use 1.1 and square \(R(B) \) until we arrive at a power of \(R(B) \) whose 1-norm is < 0.00001. This turns out to require 13 steps (which represents adding up \(2^{13} - 1 \) terms of the power series). We get:

\[
B_{13}^* = \begin{pmatrix}
19.2500 & 24.3833 & 2.5667 & -16.6833 \\
24.3833 & 239.9833 & -94.9667 & -21.8167 \\
2.5667 & -94.9667 & 61.6000 & -7.7000 \\
\end{pmatrix}
\]
and
\[
B^*_{13} B = \begin{pmatrix}
-0.500 & -0.1500 & 0.1000 & 0.3000 \\
0.7167 & -0.8500 & -0.4333 & 0.3667 \\
-0.2667 & -0.2667 & 0.5333 & -0.0667 \\
0.0833 & 0.2500 & -0.1667 & -0.1667
\end{pmatrix}
\]
which agrees with \(A^{-1} \) to the number of decimal places used here.

1.3.3. **Proof of the main result.** Recall that § 1.2.1 describes several different concepts of the size of a matrix: the 1-norm, the \(\infty \)-norm, and the 2-norm. The proof that the Pan-Reif algorithm works requires at all three of these. We will also need several inequalities that these norms satisfy.

Lemma 1.54. The vector norms, the 1-norm, the \(\infty \)-norm, and the 2-norm defined in 1.12 on page 140 satisfy:

1. \(\|v\|_\infty \leq \|v\|_2 \leq \|v\|_1 \);
2. \(\|v\|_1 \leq n \|v\|_\infty \);
3. \(\|v\|_2 \leq (n^{1/2}) \|v\|_\infty \);
4. \((n^{-1/2}) \|v\|_1 \leq \|v\|_2 \);
5. \(\|v\|_2 \leq \|v\|_1 \cdot \|v\|_\infty \);

Proof. \(\|v\|_\infty \leq \|v\|_2 \) follows by squaring both terms; \(\|v\|_2 \leq \|v\|_1 \) follows by squaring both terms and realizing that \(\|v\|_1^2 \) has cross-terms as well as the squares of single terms. \(\|v\|_1 \leq n \|v\|_\infty \) follows from the fact that each of the \(n \) terms in \(\|v\|_1 \) is \(\leq \) the maximum such term. \(\|v\|_2 \leq (n^{1/2}) \|v\|_\infty \) follows by a similar argument after first squaring both sides.

\((n^{-1/2}) \|v\|_1 \leq \|v\|_2 \) follows from Lagrange undetermined multipliers. They are used to minimize \(\sqrt{\sum |v_i|^2} \) subject to the constraint that \(\sum |v_i| = 1 \) (this is the same as minimizing \(\sum |v_i|^2 \) — it is not hard to see that the minimum occurs when all coordinates (i.e., all of the \(|v_i| \)) are equal and the value taken on by \(\sqrt{\sum |v_i|^2} \) is \((n^{1/2}) |v_0| \) in this case.

The last inequality follows by an argument like that used for ii — each term \(|v_i|^2 \) is \(\leq |v_i| \times \) the maximum such term. \(\square \)

These relations imply the following relations among the corresponding matrix norms:

Corollary 1.55.

1. \(\|M\|_2 \leq (n^{1/2}) \|M\|_\infty \);
2. \((n^{-1/2}) \|M\|_1 \leq \|M\|_2 \);
3. \(\|M\|_2 \leq \|M\|_1 \cdot \|M\|_\infty \)

Recall the formulas for the 1-norm and the \(\infty \)-norm in 1.24 on page 144 and 1.25 on page 144.

The rest of this section will be spent examining the theoretical basis for this algorithm. In particular, we will be interested in seeing why \(B \), as given above, is a sufficiently good estimate for \(A^{-1} \). The important property of \(B \) is:

Theorem 1.56.

1. \(\|B\|_2 \leq 1/\|A\|_2 \leq 1/\max_{i,j} |a_{ij}| \);
2. \(\|R(B)\|_2 \leq 1 - 1/((\text{cond } A)^2 n) \).

1. This result applies to the 2-norms of the matrices in question.
2. The remainder of this section will be spent proving these statements. It isn’t hard to see how these statements imply the main results (i.e. the facts cited above) — \(\|B\|_2 \leq 1/\max_{i,j} |a_{ij}| \leq M \) and \(\|R(B)\|_2 \leq 1 - 1/n^2M^2 \), by the remark above.

3. The proof of this theorem will make heavy use of the eigenvalues of matrices — 1.13 on page 140 for a definition of eigenvalues. The idea, in a nutshell, is that:
 a. the eigenvalues of \(B \) and \(R(B) \), as defined in 1.53, are closely related to those of \(A \);
 b. the eigenvalues of any matrix are closely related to the 2-norm of the matrix.

We can, consequently, prove an inequality for the 2-norm of \(R(B) \) and use certain relations between norms (described in 1.54 on page 170) to draw conclusions about the values of the other norms of \(R(B) \) and the convergence of the power-series.

Another way to think of this, is to suppose that the matrix \(A \) is diagonalizable in a suitable way, i.e. there exists a nonsingular matrix \(Z \) that preserves the 2-norm\(^6\), and such that \(D = Z^{-1}AZ \) is a diagonal matrix — its only nonzero entries lie on the main diagonal. For the time being forget about how to compute \(Z \) — it turns out to be unnecessary to do so — we only need know that such a \(Z \) exists. It turns out that it will be relatively easy to prove the main result in this case.

We make essential use of the fact that the 2-norm of \(D \) is the same as that of \(A \) (since \(Z \) preserves 2-norms) — in other words, it is not affected by diagonalization. Suppose that \(D \) is

\[
\begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_n
\end{pmatrix}
\]

Then:
1. \(\|D\|_2 = \|A\|_2 = \max_i |\lambda_i| \);
2. \(A \) is nonsingular if and only if none of the \(\lambda_i \) is 0.

Now, let \(t = 1/(\|A\|_1 \cdot \|A\|_\infty) \). Then \(\|A\|_2^2 \leq 1/t \), by 1.26 on page 146, and the 2-norm of \(B \) is equal to \(t \cdot \max_i |\lambda_i| \). The matrix \(R(D) \) is equal to:

\[
\begin{pmatrix}
1 - t\lambda_1^2 & 0 & \ldots & 0 \\
0 & 1 - t\lambda_2^2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 - t\lambda_n^2
\end{pmatrix}
\]

and its 2-norm is equal to \(\max_i (1 - t\lambda_i^2) \). If \(A \) was nonsingular, then the \(\lambda_i \) are all nonzero. The fact that \(\|A\|_2^2 \leq 1/t \) and the fact that \(\|A\|_2 = \max_i |\lambda_i| \) imply that \(t\lambda_i^2 \leq 1 \) for all \(i \) and \(\|D\|_2 = \max_i 1 - t\lambda_i^2 < 1 \). But this is a 2-norm, so it is not sensitive to diagonalization. It is not hard to see that \(R(D) \) is the diagonalization of \(R(B) \) so we conclude that \(\|R(B)\|_2 < 1 \), if \(A \) was nonsingular.

All of this depended on the assumption that \(A \) could be diagonalized in this way. This is not true for all matrices — and the bulk of the remainder of this section

\(^6\)Such a matrix is called unitary — it is characterized by the fact that \(Z^\dagger = Z^{-1} \)
involve some tricks that Reif and Pan use to reduce the general case to the case where A can be diagonalized.

Recall the definition of spectral radius in 1.13 on page 140.

Applying 1.26 on page 146 to $W = A^H$ we get $\|A^H\|_2^2 \leq 1/t$ where $t = 1/(\|A\|_1 \cdot \|A\|_\infty)$ is defined in 1.52 on page 168. It follows, by 1.56 that $\|A^H\|_2 \leq 1/(t\|A\|_2)$.

The remainder of this section will be spent proving the inequality in line 2 of 1.56 on page 170.

Corollary 1.57. Let λ be an eigenvalue of A^HA and let A be nonsingular. Then $1/\|A^{-1}\|_2^2 \leq \lambda \leq \|A\|_2^2$.

Proof. $\lambda \leq \rho(A^HA) = \|A\|_2^2$ by definition and 1.20 on page 143. On the other hand $(A^HA)^{-1} = A^{-1}(A^{-1})^H$, so $(A^HA)^{-1}$ is a Hermitian positive definite matrix. Lemma 1.19 on page 143 implies that $1/\lambda$ is an eigenvalue of $(A^HA)^{-1}$. Consequently $1/\lambda \leq \rho((A^HA)^{-1}) = \rho(A^{-1}(A^{-1})^H) = \|A^{-1}\|_2^2$.

Lemma 1.58. Let B and $t = 1/(\|A\|_1 \cdot \|A\|_\infty)$ Let μ be an eigenvalue of $R(B) = I - BA$. Then $0 \leq \mu \leq 1 - 1/(\text{cond } A)^2n$.

Proof. Let $R(B)v = \mu v$ for $v \neq 0$. Then $(I - tA^H)v = v = tA^Hv = \mu v$. Therefore $A^HAv = \lambda v$ for $\lambda = (1 - \mu)/t$ so λ is an eigenvalue of A^HA. Corollary 1.57 implies that $1/\|A^{-1}\|_2^2 \leq \lambda = (1 - \mu)/t \leq \|A\|_2^2$. It immediately follows that $1 - t\|A\|_2^2 \leq \mu \leq 1 - t/\|A^{-1}\|_2^2$. It remains to use the definition of $t = 1/(\|A\|_1 \cdot \|A\|_\infty)$ and to apply statement 3 of 1.55 on page 170.

We are almost finished. We have bounded the eigenvalues of $R(B)$ and this implies a bound on the spectral radius. The bound on the spectral radius implies a bound on the 2-norm since $R(B)$ is Hermitian. Since μ is an arbitrary eigenvalue of $R(B)$, $\rho(R(B)) \leq 1 - 1/(\text{cond } A)^2$. On the other hand, $\|R(B)\|_2 = \rho(R(B))$ since $R(B) = I - tA^HA$ is Hermitian. This completes the proof of the second line of 1.56 on page 170.

Exercises.

1.16. Apply the algorithm given here to the development of an algorithm for determining whether a matrix is nonsingular. Is it possible for a matrix A to be singular with $\|R(B)\| < 1$ (any norm)? If this happens, how can one decide whether A was singular or not?

1.17. Write a C* program to implement this algorithm. Design the algorithm to run until a desired degree of accuracy is achieved — in other words do not make the program use the error-estimates given in this section.

1.18. From the sample computation done in the text, estimate the size of the constant of proportionality that appears in the ‘$O(\log^2 n)$’.
1.19. Compute the inverse of the matrix

\[
\begin{pmatrix}
2 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
3 & 0 & 3 & 0 \\
1 & 2 & 3 & 4 \\
\end{pmatrix}
\]

using the algorithm of 1.47 on page 166.

1.20. If \(A \) is a symmetric positive definite matrix (i.e., all of its eigenvalues are positive) show that

\[
B = \frac{I}{\|A\|_\infty}
\]

can be used as an approximate inverse of \(A \) (in place of the estimate in 1.53 on page 169).

1.4. Nonlinear Problems. In this section we will give a very brief discussion of how the iterative methods developed in this chapter can be generalized to nonlinear problems. See [76] for a general survey of this type of problem and [103] and [15] for a survey of parallel algorithms.

Definition 1.59. Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a function that maps some region \(M \subseteq \mathbb{R}^n \) to itself. This function will be called:

1. a *contracting map* on \(M \) with respect to a (vector) norm \(\| \cdot \| \) if there exists a number \(0 \leq \alpha < 1 \) such that, for all pairs of points \(x \) and \(y \) in \(M \)

\[
\| f(x) - f(y) \| \leq \alpha \| x - y \|
\]

2. a *pseudo-contracting* map on \(M \) (with respect to a vector norm) if there exists a point \(x_0 \in M \) such that:

a. \(f(x_0) = x_0 \) and there exists a number \(\alpha \) between 0 and 1 such that for all \(x \in M \)

\[
\| f(x) - x_0 \| \leq \alpha \| x - x_0 \|
\]

Although these definition might seem a little abstract at first glance, it turns out that the property of being a contracting map is precisely a nonlinear version of the statement that the norm of a matrix must be \(< 1 \). The material in this section will be a direct generalization of the material in earlier section on the Jacobi method — see page 151.

Suppose \(f \) is a pseudo-contracting map. Then, it is not hard to see that the iterating the application of \(f \) to any point in space will result in a sequence of points that converge to \(x_0 \):

\[f(x), f(f(x)), f(f(f(x))), \ldots \rightarrow x_0 \]
This is a direct consequence of the fact that the distance between any point and x_0 is reduced by a constant factor each time f is applied to the parameter. This means that if we want to solve an equation like:

$$f(x) = x$$

we can easily get an iterative procedure for finding x_0. In fact the Jacobi (JOR, SOR) methods are just special cases of this procedure in which f is a linear function.

As remarked above, the possibilities for exploiting parallelism in the nonlinear case are generally far less than in the linear case. In the linear case, if we have enough processors, we can parallelize multiple iterations of the iterative solution of a linear system — i.e. if we must compute $M^n x$

where M is some matrix, and n is a large number, we can compute M^n by repeated squaring — this technique is used in the Pan-Reif algorithm in § 1.3. In nonlinear problems, we generally do not have a compact and uniform way of representing f^n (the n-fold composite of a function f), so we must perform the iterations one at a time. We can still exploit parallelism in computing f — when there are a large number of variables in the problem under investigation.

We conclude this section with an example:

Example 1.60. Let M be an $k \times k$ matrix. If v is an eigenvector of M with a nonzero eigenvalue, λ, then

$$Mv = \lambda v$$

by definition. If $\| \cdot \|$ is any norm, we get:

$$\|Mv\| = |\lambda|\|v\|$$

so we get

$$\frac{Mv}{\|Mv\|} = \frac{v}{\|v\|}$$

Consequently, we get the following nonlinear equation

$$f(w) = w$$

where $f(w) = Mw/\|Mw\|$. Its solutions are eigenvectors of M of unit norm (all eigenvectors of M are scalar multiples of these). This is certainly nonlinear since it involves dividing a linear function by $\|Mw\|$ which, depending upon the norm used may have square roots or the maximum function. This turns out to be a pseudo-contracting map to where x_0 (in the notation of definition 1.59) is the eigenvector of the eigenvalue of largest absolute value.

1.5. A Parallel Algorithm for Computing Determinants.

In this section we will discuss an algorithm for computing determinants of matrices. The first is due to Csanky and appeared in [39]. It is of more theoretical than practical interest, since it uses $O(n^4)$ processors and is numerically unstable. The problem of computing the determinant of a matrix is an interesting one because there factors that make it seem as though there might not exist an NC algorithm.

- the definition of a determinant (1.8 on page 139) has an exponential number of terms in it.
the only well-known methods for computing determinants involve variations on using the definition, or Gaussian Elimination. But this is known to be P-complete — see page 41.

Before Csanky published his paper [39], in 1976, the general belief was that no NC algorithm existed for computing determinants.

Throughout this section A will denote an $n \times n$ matrix.

Definition 1.61. If A is an $n \times n$ matrix, the trace of A is defined to be

$$\text{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

Recall the characteristic polynomial, defined in 1.13 on page 140. If the matrix is nonsingular

$$f(\lambda) = \det(\lambda \cdot I - A) = \prod_{i=1}^{n}(\lambda - \lambda_i)$$

$$= \lambda^n + c_1 \lambda^{n-1} + \cdots + c_{n-1} \lambda + c_n$$

where the $\{\lambda_i\}$ are the eigenvalues of the matrix. Direct computation shows that

$$\text{tr}(A) = \sum_{i=1}^{n} \lambda_i = -c_1$$

It follows that the trace is an invariant quantity — in other words, transforming the matrix in a way that corresponds to a change in coordinate system in the vector-space upon which it acts, doesn’t change the trace.

Setting $\lambda = 0$ into equation (16) implies that the determinant of A is equal to $(-1)^n c_n$.

The first step in Csanky’s algorithm for the determinant is to compute the powers of A: $A^2, A^3, \ldots, A^{n-1}$, and the trace of each. Set $s_k = \text{tr}(A^k)$.

Proposition 1.62. If A is a nonsingular matrix and $k \geq 1$ is an integer then

$$s_k = \text{tr}(A^k) = \sum_{i=1}^{n} \lambda_i^k$$

Proof. Equation (17) shows that $\text{tr}(A^k) = \sum_{i=1}^{n} \mu(k)_i$, where the $\{\mu(k)_i\}$ are the eigenvalues of A^k, counted with their multiplicities. The result follows from the fact that the eigenvalues of A^k are just k^{th} powers of corresponding eigenvalues of A. This follows from definition of eigenvalue in 1.13 on page 140: it is a number with the property that there exists a vector v such that $Av = \lambda v$. Clearly, if multiplying v by A has the effect of multiplying it by the scalar λ, then multiplying the same vector by A^k will have the effect of multiplying it by the scalar λ^k. So $\mu(k)_i = \lambda_i^k$ and the result follows. \Box

At this point we have the quantities $\sum_{i=1}^{n} \lambda_i, \sum_{i=1}^{n} \lambda_i^2, \ldots, \sum_{i=1}^{n} \lambda_i^{n-1}$. It turns out that we can compute $\prod_{i=1}^{n} \lambda_i$ from this information. It is easy to see how to do this in simple cases. For instance, suppose $n = 2$.

1. $s_1 = \lambda_1 + \lambda_2$
2. $s_2 = \lambda_1^2 + \lambda_2^2$
and, if we compute s_1^2 we get $\lambda_1^2 + 2\lambda_1 \lambda_2 + \lambda_2^2$, so

$$\lambda_1 \lambda_2 = \frac{s_1^2 - s_2}{2}$$

There is a general method for computing the coefficients of a polynomial in terms sums of powers of its roots. This was developed by Le Verrier in 1840 (see [166] and [50]) to compute certain elements of orbits of the first seven planets (that is all that were known at the time). Le Verrier

Proposition 1.63. Let

$$p(x) = x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n$$

and let the roots of $p(x)$ be x_1, \ldots, x_n. Then

$$\begin{pmatrix}
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & k & 0 \\
0 & \cdots & \cdots & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{pmatrix}
= -
\begin{pmatrix}
s_1 \\
s_2 \\
\vdots \\
s_n
\end{pmatrix}$$

where $s_k = \sum_{i=1}^n x_i^k$.

Proof. We will give an analytic proof of this result. If we take the derivative of $p(x)$, we get:

$$\frac{dp(x)}{dx} = nx^{n-1} + c_1(n-1)x^{n-2} + \cdots + c_{n-1}$$

We can also set

$$p(x) = \prod_{i=1}^n (x - x_i)$$

and differentiate this formula (using the product rule) to get:

$$\frac{dp(x)}{dx} = \sum_{i=1}^n \prod_{j=1}^n (x - x_j) = \sum_{i=1}^n \frac{p(x)}{x - x_i}$$

so we get

$$nx^{n-1} + c_1(n-1)x^{n-2} + \cdots + c_{n-1} = \sum_{i=1}^n \frac{p(x)}{x - x_i} = p(x) \sum_{i=1}^n \frac{1}{x - x_i}$$

Now we expand each of the terms $1/(x - x_i)$ into a power-series over x_i/x to get

$$\frac{1}{x - x_i} = \frac{1}{x(1 - x_i/x)} = \frac{1}{x} \left(1 + \frac{x_i}{x} + \frac{x_i^2}{x^2} + \cdots\right)$$
Now we plug this into equation (18) to get

\[n x^{n-1} + c_1 (n-1) x^{n-2} + \cdots + c_{n-1} = p(x) \sum_{i=1}^{n} \frac{1}{x - x_i} \]

\[= \frac{p(x)}{x} \sum_{i=1}^{n} \left(1 + \frac{x_i}{x} + \frac{x_i^2}{x^2} + \cdots \right) \]

\[= p(x) \left(\frac{n}{x} + \frac{s_1}{x^2} + \frac{s_2}{x^3} + \cdots \right) \]

Since the power-series converge for all sufficiently large values of \(x \), the coefficients of \(x \) must be the same in both sides of the equations. If we equate the coefficients of \(x^{n-k-1} \) in both sides of this equation, we get the matrix equation in the statement.

Csanky’s algorithm for the determinant is thus:

Algorithm 1.64. Given an \(n \times n \) matrix \(A \) we can compute the determinant by the following sequence of steps:

1. Compute \(A^k \) in parallel for \(k = 2, \ldots, n - 1 \). This can be done in \(O(\log^2 n) \) time using \(O(n^{2.376}) \) processors;
2. Compute \(s_k = tr(A^k) \) for \(k = 1, \ldots, n - 1 \). This requires \(O(\log n) \) time using \(O(n^2) \) processors;
3. Solve the matrix-equation in 1.63 for

\[
\begin{pmatrix}
 c_1 \\
 \vdots \\
 c_n
\end{pmatrix}
\]

these are the coefficients of the characteristic polynomial of \(A \). This equation can be solved in \(O(\log^2 n) \) time using \(n^{2.376} \) processors. The only thing that has to be done is to invert the square matrix in the equation, and this can be done via the algorithm 1.49 on page 167.

Return \((-1)^n c_n\) as the determinant of \(A \).

Note that we also get the values of \(c_1, c_2, \) etc., as an added bonus. There is no simple way to compute \(c_n \) without also computing these other coefficients. The original paper of Csanky used these coefficients to compute \(A^{-1} \) via the formula:

\[A^{-1} = -\frac{1}{c_n} \left(A^{n-1} + c_1 A^{n-2} + \cdots + c_{n-1} I \right) \]

Although this was the first published NC-algorithm for the inverse of an arbitrary invertible matrix, it is not currently used, since there are much better ones available\(^7\).

\(^7\)Better in the sense of using fewer processors, and being more numerically stable.
1.6. Further reading. Many matrix algorithms make use of the so-called \(LU \) decomposition of a matrix (also called the Cholesky decomposition). Given a square matrix \(M \), the Cholesky decomposition of \(M \) is a formula

\[
M = LU
\]

where \(L \) is a lower triangular matrix and \(U \) is an upper triangular matrix. In [41], Datta gives an \(NC \) algorithm for finding the Cholesky decomposition of a matrix. It isn’t entirely practical since it requires a parallel algorithm for the determinant (like that in § 1.5 above).

One topic we haven’t touched upon here is that of normal forms of matrices. A normal form is a matrix-valued function of a matrix that determines (among other things) whether two matrices are similar (see the definition of similarity of matrices in 1.15 on page 141). If a given normal form of a matrix \(M \) is denoted \(F(M) \) (some other matrix), then two matrices \(M_1 \) and \(M_2 \) are similar if and only if \(F(M_1) = F(M_2) \), exactly. There are a number of different normal forms of matrices including: Smith normal form and Jordan form.

Suppose \(M \) is an \(n \times n \) matrix with eigenvalues (in increasing order) \(\lambda_1, \ldots, \lambda_k \). Then the Jordan normal form of \(M \) is the matrix

\[
J(M) = \begin{pmatrix}
Q_1 & \ & \ & 0 \\
& Q_2 & \ & \ \ \\
& & \ddots & \ \\
& & \ & Q_k
\end{pmatrix}
\]

where \(Q_i \) is an \(m_i \times m_i \) matrix of the form

\[
Q_i = \begin{pmatrix}
\lambda_i & \ & \ & 0 \\
1 & \lambda_i & \ & \ \\
& \ddots & \ddots & \ \\
& & 1 & \lambda_i
\end{pmatrix}
\]

and the \(\{m_i\} \) are a sequence of positive integers that depend upon the matrix.

In [81], Kaltofen, Krishnamoorthy, and Saunders present parallel randomized algorithms for computing these normal forms. Note that their algorithms must, among other things, compute the eigenvalues of a matrix.

If we only want to know the largest eigenvalue of a matrix, we can use the power method, very briefly described in example 1.60 on page 174. If we only want the eigenvalues of a matrix, we can use the parallel algorithm developed by Kim and Chronopoulos in [88]. This algorithm is particularly adapted to finding the eigenvalues of sparse matrices. In [144], Sekiguchi, Sugihara, Hiraki, and Shimada give an implementation of an algorithm for eigenvalues of a matrix on a particular parallel computer (the Sigma-1).

2. The Discrete Fourier Transform

2.1. Background. Fourier Transforms are variations on the well-known Fourier Series. A Fourier Series was traditionally defined as an expansion of
some function in a series of *sines* and *cosines* like:

\[f(x) = \sum_{k=0}^{\infty} a_k \sin(kx) + b_k \cos(kx) \]

Since sines and cosines are periodic functions with period \(2\pi\), the expansion also will have this property. So, any expansion of this type will only be valid if \(f(x)\) is a periodic function with the same period. It is easy to transform this series (by a simple scale-factor) to make the period equal to any desired value — we will stick to the basic case shown above. *If they exist*, such expansions have many applications.

- If \(f(x)\) is equal to the sum given above, it will periodic — a wave of some sort — and we can regard the terms \(\{a_k \sin(kx), b_k \cos(kx)\}\) as the *components* of \(f(x)\) of various *frequencies*. We can regard the expansion of \(f(x)\) into a Fourier series as a decomposition of it into its components of various frequencies. This has many applications to signal-processing, time-series analysis, etc.
- Fourier series are very useful in finding solutions of certain types of partial differential equations.

Suppose \(f(x)\) is the function equal to \(x\) when \(-\pi < x \leq \pi\) and periodic with period \(2\pi\) (these two statements define \(f(x)\) completely). Then its Fourier series is:

\[
 \begin{align*}
 f(x) &= 2 \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\sin(kx)}{k} \\
 \end{align*}
\]

Figures 5.5 through 5.8 illustrate the convergence of this series when \(-\pi/2 < x \leq \pi/2\). In each case a partial sum of the series is plotted alongside \(f(x)\) to show how the partial sums get successively closer.

- Figure 5.5 compares \(f(x)\) to \(2 \sin(x)\),
- figure 5.6 plots it against \(2 \sin(x) - \sin(2x)\),
- figure 5.7 plots it against \(2 \sin(x) - \sin(2x) + 2 \sin(3x)/3\), and
- figure 5.8 plots it against \(2 \sin(x) - \sin(2x) + 2 \sin(3x)/3 - \sin(4x)/2\).

This series is only valid over a small range of values of \(x\) — the interval \([-\pi, \pi]\). This series is often re-written in terms of exponentials, via the formula:

\[e^{ix} = \cos(x) + i \sin(x) \]

where \(i = \sqrt{-1}\). We get a series like:

\[f(x) = \sum_{k=\infty}^{\infty} A_k e^{ikx} \]

We can compute the coefficients \(A_k\) using the *orthogonality property* of the function \(e^{ikx}\).

8In other words \(\sin(x + 2\pi) = \sin(x)\) and \(\cos(x + 2\pi) = \cos(x)\) for all values of \(x\)

9The frequency of \(a_k \sin(kx)\) is \(k/2\pi\).
FIGURE 5.5. First term

FIGURE 5.6. First two terms
Figure 5.7. First three terms

Figure 5.8. First four terms
\[\int_{-\pi}^{\pi} e^{ikx} e^{i\ell x} \, dx = \int_{-\pi}^{\pi} e^{ix(k+\ell)} \, dx = \left\{ \begin{array}{ll} 2\pi & \text{if } k = -\ell \text{ (because } e^{ix(k+\ell)} = e^0 = 1) \\ 0 & \text{otherwise, because } e^{2\pi i(k+\ell)/2\pi i(k+\ell)} \text{ is periodic, with period } 2\pi \end{array} \right. \]

so

\[A_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \]

We would like to discretize this construction — to define it so \(x \) only takes on a finite number of values. The crucial observation is that if \(x \) is of the form \(2\pi j/n \) for some integers \(j \) and \(n \), then

\[e^{ikx} = e^{2\pi ijk/n} = e^{2\pi ikj/n+2\pi i} = e^{2\pi i(k+n)j/n} \]

(because \(e^t \) is periodic with period \(2\pi \). It follows that the exponential that occurs in the \(k \)th term is the same as the exponential that occurs in the \(k + n \)th term. Our series only really has \(n \) terms in it:

\[f(2\pi j/n) = \sum_{k=0}^{n-1} S_k e^{2\pi ijk/n} \]

where

\[S_k = \sum_{m=-\infty}^{\infty} A_{k+mn} \]

where \(k \) runs from 0 to \(n-1 \).

This serves to motivate the material on the Discrete Fourier Transform in the rest of this section.

\[\text{2.2. Definition and basic properties. There are many variations on the Discrete Fourier Transform, but the basic algorithm is the same in all cases.} \]

Suppose we are given a sequence of numbers \(\{a_0, \ldots, a_{n-1}\} \) — these represent the values of \(f(x) \) at \(n \) points — and a principal \(n \)th root of 1. This principal \(n \)th root of 1 plays the part of the functions \(\sin(x) \) and \(\cos(x) \) (both). The powers of \(\omega \) will play the part of \(\sin(kx) \) and \(\cos(kx) \). This is a complex number \(\omega \) with the property that \(\omega^n = 1 \) and \(\omega^k \neq 1 \) for all \(1 \leq k < n \) or \(\omega^k = 1 \) only if \(k \) is an exact multiple of \(n \). For instance, \(e^{2\pi i/n} \) is a principal \(n \)th root of 1.

Let \(A = \{a_0, \ldots, a_{n-1}\} \) be a sequence of (real or complex) numbers. The Fourier Transform, \(F_\omega(A) \), of this sequence with respect to \(\omega \) is defined to be the sequence \(\{b_0, \ldots, b_{n-1}\} \) given by

\[b_i = \sum_{j=0}^{n-1} a_j \omega^{ij} \]

Discrete Fourier Transforms have many applications:

1. Equations (21) and (22) relate the discrete Fourier Transform with Fourier series. It follows that all the applications of Fourier series discussed on page 179 also apply here.
2. They give rise to many fast algorithms for taking convolutions of sequences. Given two sequences \(\{a_0, \ldots, a_{n-1}\} \) and \(\{b_0, \ldots, b_{n-1}\} \), their (length-\(n \)) convolution is a sequence \(\{c_0, \ldots, c_{n-1}\} \) given by:

\[
 c_k = \sum_{i=0}^{n-1} a_i b_{k-i \mod n}
\]

(24)

It turns out that the Fourier Transform of the convolution of two sequences is just the termwise product of the Fourier Transforms of the sequences. The way to see this is as follows:

a. Pretend that the sequences \(\{a_0, \ldots, a_{n-1}\} \) and \(\{b_0, \ldots, b_{n-1}\} \) are sequences of coefficients of two polynomials:

\[
A(x) = \sum_{i=0}^{n-1} a_i x^i
\]

\[
B(x) = \sum_{j=0}^{n-1} b_j x^j
\]

b. Note that the coefficients of the product of the polynomials are the convolution of the \(a \)- and the \(b \)-sequences:

\[
(A \cdot B)(x) = \sum_{k=0}^{n-1} \left(\sum_{i+j=k} a_i b_j \right) x^k
\]

and

\[
(A \cdot B)(\omega) = \sum_{k=0}^{n-1} \left(\sum_{i+j=k \mod n} a_i b_j \right) \omega^k
\]

where \(\omega \) is an \(n \)th root of 1. The \(\mod n \) appears here because the product-polynomial above will be of degree \(2n - 2 \), but the powers of an \(n \)th root of 1 will “wrap around” back\(^{10}\) to 0.

c. Also note that the formulas for the Fourier Transform simply correspond to plugging the powers of the principal root of 1 into the polynomials \(A(x) \) and \(B(x) \):

If \(\{\mathcal{F}_\omega(a)(0), \ldots, \mathcal{F}_\omega(a)(n-1)\} \) and \(\{\mathcal{F}_\omega(b)(0), \ldots, \mathcal{F}_\omega(b)(n-1)\} \) are the Fourier Transforms of the two sequences, then equation 23 shows that \(\mathcal{F}_\omega(a)(i) = A(\omega^i) \) and \(\mathcal{F}_\omega(b)(i) = B(\omega^i) \), so the Fourier Transformed sequences are just values taken on by the polynomials when evaluated at certain points. The conclusion follows from the fact that, when you multiply two polynomials, their values at corresponding points get multiplied. The alert reader might think that this implies that Discrete Fourier Transforms have applications to computer algebra. This is very much the case — see §3.10 of chapter 6 for more details. Page 389 has a sample program

\(^{10}\)Notice that this “wrapping around” will not occur if the sum of the degrees of the two polynomials being multiplied is \(< n \).
that does symbolic computation by using a form of the Fast Fourier Transform.

It follows that, if we could compute inverse Fourier transforms, we could compute the convolution of the sequences by:

- taking the Fourier Transforms of the sequences;
- multiplying the Fourier Transforms together, term by term.
- Taking the Inverse Fourier Transform of this termwise product.

Convolutions have a number of important applications:

a. the applications to symbolic computation mentioned above (and discussed in more detail in a later chapter).

b. if \(\{a_0, \ldots, a_{n-1}\} \) and \(\{b_0, \ldots, b_{n-1}\} \) are bits of two \(n \)-bit binary numbers then the product of the two numbers is the sum

\[
\sum_{i=0}^{n} c_i 2^i
\]

where \(\{c_0, \ldots, c_{n-1}\} \) is the convolution of the \(a \), and \(b \)-sequences. It is, of course, very easy to multiply these terms by powers of 2. It follows that convolutions have applications to binary multiplication. These algorithms can be incorporated into VLSI designs.

3. A two-dimensional version of the Fourier Transform is used in image-processing. In the two-dimensional case the summation over \(j \) in formula 23 is replaced by a double sum over two subscripts, and the sequences are all double-indexed. The Fourier Transform of a bitmap can be used to extract graphic features from the original image.

The idea here is that Fourier Transforms express image-functions\(^{11}\) in terms of periodic functions. They, consequently, extract periodic information from the image or recognize repeating patterns.

We will, consequently be very interested in finding fast algorithms for computing Fourier Transforms and their inverses. It turns out that the inverse of a Fourier Transform is nothing but another type of Fourier Transform. In order to prove this, we need

Proposition 2.1. Suppose \(\omega \) is a principal \(n \)-th root of 1, and \(j \) is an integer \(0 \leq j \leq n - 1 \). Then:

\[
\sum_{i=0}^{n-1} \omega^{ij} = \begin{cases} n & \text{if } j = 0 \\ 0 & \text{if } 1 \leq j \leq n - 1 \end{cases}
\]

Proof. In order to see this suppose

\[
S = \sum_{i=0}^{n-1} \omega^{ij}
\]

\(^{11}\)I. e., the functions whose value is the intensity of light at a point of the image
Now, if we multiply \(S \) by \(\omega^j \), the sum isn’t changed — in other words

\[
\omega^j S = \sum_{i=0}^{n-1} \omega^{(i+1)j}
\]

because \(\omega^n = 1 \)

\[
= \sum_{i=0}^{n-1} \omega^{ij}
\]

\[
= S
\]

This implies that \((\omega^j - 1)S = 0\). Since \(\omega \) is a principal \(n \)th root of 1, \(\omega^j \neq 1 \). This implies that \(S = 0 \), since the only number that isn’t changed by being multiplied by a nonzero number is zero.

The upshot of all of this is that the Inverse Fourier Transform is essentially the same as another Fourier Transform:

Theorem 2.2. Suppose \(A = \{a_0, \ldots, a_{n-1}\} \) is a sequence of \(n \) numbers, \(\omega \) is a principal \(n \)th root of 1 and the sequence \(B = \{b_0, \ldots, b_{n-1}\} \) is the Fourier Transform of \(A \) with respect to \(\omega \). Let the sequence \(C = \{c_0, \ldots, c_{n-1}\} \) be the Fourier Transform of \(B \) with respect to \(\omega^{-1} \) (which is also a principal \(n \)th root of 1). Then \(c_i = na_i \) for all \(0 \leq i < n \).

It follows that we can invert the Fourier Transform with respect to \(\omega \) by taking the Fourier Transform with respect to \(\omega^{-1} \) and dividing by \(n \).

We can prove this statement by straight computation — the Fourier transform of \(B = \{b_0, \ldots, b_{n-1}\} \) with respect to \(\omega^{-1} \) is

\[
\sum_{i=0}^{n-1} b_i \omega^{-1 ij} = \sum_{i=0}^{n-1} b_i \omega^{-ij} = \sum_{i=0}^{n-1} \left(\sum_{k=0}^{n-1} a_k \omega^{ik} \right) \omega^{-ij} = \sum_{i=0}^{n-1} \sum_{k=0}^{n-1} a_k \omega^{(i-k)j} = \sum_{k=0}^{n-1} a_k \sum_{i=0}^{n-1} \omega^{(i-k)j}
\]

and now we use formula 25 to conclude that

\[
\sum_{i=0}^{n-1} \omega^{j(k-i)} = \begin{cases} n & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}
\]

and the last sum must be \(na_i \).

We conclude this section by analyzing the time and space complexity of implementing equation (23).

1. On a sequential computer we clearly need \(O(n^2) \)-time and space.
2. On a PRAM we can compute the Fourier Transform in \(O(\log n) \) time using \(O(n^2) \) processors. This algorithm stores \(a_i \omega^{ij} \) in processor \(P_{i,j} \), and uses the sum-algorithm described on page 58 to compute the summations.
2.3. The Fast Fourier Transform Algorithm. In 1942 Danielson and Lanczos developed an algorithm for computing the Fourier Transform that executed in $O(n \log n)$ time — see [40]. The title of this paper was “Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids” — it gives some idea of how one can apply Fourier Transforms. They attribute their method to ideas of König and Runge that were published in 1924 in [92].

In spite of these results, the Fast Fourier Transform is generally attributed to Cooley and Tuckey [12] who published [33] in 1965. It is an algorithm for computing Fourier Transforms that, in the sequential case, is considerably faster than the straightforward algorithm suggested in equation (23). In the sequential case, the Fast Fourier Transform algorithm executes in $O(n \log n)$ time. On a PRAM computer it executes in $O(\log n)$ time like the straightforward implementation of formula (23), but only requires $O(n)$ processors. This algorithm has a simple and ingenious idea behind it.

Suppose $n = 2^k$ and we have a sequence of n numbers $\{a_0, \ldots, a_{n-1}\}$, and we want to take its Fourier Transform. As mentioned above, this is exactly the same as evaluating the polynomial $a_0 + a_1 x + \cdots + a_n x^{n-1}$ at the points $\{\omega, \omega^2, \ldots, \omega^{n-1}\}$, where ω is a principal n^{th} root of 1. The secret behind the Fast Fourier Transform is to notice a few facts:

- ω^2 is a principal $n/2^{th}$ root of 1.
- We can write the polynomial $p(x) = a_0 + a_1 x + \cdots + a_n x^{n-1}$ as
 \begin{equation}
 p(x) = r(x) + xs(x)
 \end{equation}
 where
 \begin{align*}
 r(x) &= a_0 + a_2 x^2 + a_4 x^4 + \cdots + a_{n-2} x^{n-2} \\
 s(x) &= a_1 + a_3 x^2 + a_5 x^4 + \cdots + a_{n-1} x^{n-2}
 \end{align*}

This means that we can evaluate $p(x)$ at the powers of ω by

1. Splitting the sequence of coefficients into the even and the odd subsequences — forming the polynomials $r(x)$ and $s(x)$.
2. Let
 \begin{align*}
 \bar{r}(x) &= a_0 + a_2 x^2 + a_4 x^4 + \cdots + a_{n-2} x^{(n-2)/2} \\
 \bar{s}(x) &= a_1 + a_3 x^2 + a_5 x^4 + \cdots + a_{n-1} x^{(n-2)/2}
 \end{align*}

 Evaluating $\bar{r}(x)$ and $\bar{s}(x)$ at the powers of ω^2.
3. Plugging the results into equation (27).

This observations gives rise to the following algorithm for the Discrete Fourier Transform:

\textbf{Algorithm 2.3.} Let n a positive even integer. We can compute the Fourier Transform of the sequence A_0, \ldots, A_{n-1}, with respect to a primitive n^{th} root of 1, ω, by the following sequence of operations:

1. “unshuffle” the sequence into odd and even subsequences: A_{odd} and A_{even}.\footnote{This is a curious example of the “failure to communicate” that sometimes manifests itself in academia — publication of results doesn’t necessary cause them to become “well-known.”}
2. Compute $\mathcal{F}_ω(A_{\text{odd}})$ and $\mathcal{F}_ω(A_{\text{even}})$.
3. Combine the results together using (27). We get:

\begin{align*}
\mathcal{F}_ω(A)(i) &= \mathcal{F}_ω(A_{\text{even}})(i) + \omega^i\mathcal{F}_ω(A_{\text{odd}})(i) \\
&= \mathcal{F}_ω(A_{\text{even}})(i \mod n/2) + \omega^i\mathcal{F}_ω(A_{\text{odd}})(i \mod n/2)
\end{align*}

Now we analyze the time-complexity of this algorithm. Suppose that $T(n)$ is the time required to compute the Fourier Transform for a sequence of size n (using this algorithm). The algorithm above shows that:

1. In parallel: $T(n) = T(n/2) + 1$, whenever n is an even number. It is not hard to see that this implies that $T(2^k) = k$, so the parallel execution-time of the algorithm is $O(\lg n)$.
2. Sequentially $T(n) = 2T(n/2) + n/2$, whenever n is an even number. Here, the additional term of $n/2$ represents the step in which the Fourier Transforms of the odd and even sub-sequences are combined together. If we write $T(2^k) = a_k 2^k$ we get the following formula for the a_k:

$$a_k 2^k = 2 \cdot a_{k-1} 2^{k-1} + 2^{k-1}$$

and, when we divide by 2^k, we get:

$$a_k = a_{k-1} + 1/2$$

which means that a_k is proportional to k, and the sequential execution-time of this algorithm is $O(n \lg n)$. This is still faster than the original version of the Fourier Transform algorithm in equation (23) on page 182.

Although it is possible to program this algorithm directly, most practical programs for the FFT use an \textit{iterative} version of this algorithm. It turns out that the simplest way to describe the iterative form of the FFT algorithm involves representing it \textit{graphically}. Suppose the circuit depicted in figure 5.9 represents the process of forming linear combinations:

\begin{align*}
\text{OUTPUT}_1 &\leftarrow a \cdot \text{INPUT}_1 + c \cdot \text{INPUT}_2 \\
\text{OUTPUT}_2 &\leftarrow b \cdot \text{INPUT}_1 + d \cdot \text{INPUT}_2
\end{align*}

We will refer to figure 5.9 as the \textit{butterfly diagram} of the equations above.
Computes $\mathcal{F}_{\omega^2}(A_{\text{odd}})$
Computes $\mathcal{F}_{\omega^2}(A_{\text{even}})$

Figure 5.10. Graphic representation of the FFT algorithm
Then we can represent equation (29) by the diagram in figure 5.10.

In this figure, the shaded patches of the graphs represent “black boxes” that compute the Fourier transforms of the odd and even subsequences, with respect to ω^2. All lines without any values indicated for them are assumed to have values of 1. Diagonal lines with values not equal to 1 have their values enclosed in a bubble.

In order to understand the recursive behavior of this algorithm, we will need the following definition:

Definition 2.4. Define the *unshuffle* operation of size $2m$ to be the permutation:

$$U_m = \begin{pmatrix} 0 & 2 & 4 & 6 & \ldots & 2m-2 & 1 & \ldots & 2m-1 \\ 0 & 1 & 2 & 3 & \ldots & m-1 & m & \ldots & 2m-1 \end{pmatrix}$$

Here, we use the usual notation for a permutation — we map elements of the upper row into corresponding elements of the lower row.

Let $n = 2^k$ and define the *complete unshuffle* operation on a sequence, V of n items to consist of the result of:

- Performing U_n on V;
- Subdividing V into its first and last $n/2$ elements, and performing $U_{n/2}$ independently on these subsequences.
- Subdividing V into 4 disjoint intervals of size $n/4$ and performing $U_{n/4}$ on each of these.
- This procedure is continued until the intervals are of size 2.

We use the notation C_n to denote the complete unshuffle.

For instance, a complete unshuffle of size 8 is:

$$C_8 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 4 & 2 & 6 & 1 & 5 & 3 & 7 \end{pmatrix}$$

Proposition 2.5. Let $n = 2^k$, where k is a positive integer. Then the complete unshuffle, C_n, is given by the permutation:

$$e_n = \begin{pmatrix} 0 & 1 & 2 & \ldots & n-1 \\ e(0,k) & e(1,k) & e(2,k) & \ldots & e(n-1,k) \end{pmatrix}$$

where the function $e(\star,k)$ is defined by:

If the k-bit binary representation of j is $b_{k-1} \ldots b_0$, define $e(k,j)$ to be the binary number given by $b_0 \ldots b_{k-1}$.

So, we just reverse the k-bit binary representation of a number in order to calculate the e-function. Note that this permutation is idempotent, i.e., $e_n^2 = 1$, since the operation of reversing the order of the bits in a binary representation of a number is also idempotent. This means that $e_n^{-1} = e_n$.

Proof. We prove this by induction on k (where $n = 2^k$). If $k = 1$ then the result is trivial. We assume the result is true for some value of k, and we prove this for $k + 1$. When $n = 2^{k+1}$, the first unshuffle operation moves all even-indexed elements to the lower half of the interval and all odd-indexed elements to the upper half, and then performs the unshuffle-operations for $n = 2^k$ on each of the sub-intervals. Suppose we have a number, m with the binary representation $b_{k+1}b_k \ldots b_1b_0$.

Claim: The process of unshuffling the numbers at the top level has the effect of performing a cyclic right shift of the binary-representations.

This is because even numbers get moved to a position equal to half their original value — this is a right-shift of 1 bit. Odd numbers, s, get sent to $2^k + \lfloor s/2 \rfloor$ — so the 1-bit in the 0th position gets shifted out of the number, but is added in to the left end of the number.

It follows that our number m gets shifted into position $b_0b_1\ldots b_kb_{k+1}$. Now we perform the complete shuffle permutations on the upper and lower halves of the whole interval. This reverses the remaining bits of the binary-representation of numbers, by the inductive hypothesis. Our number m gets shifted to position $b_0b_1\ldots b_kb_{k+1}$. We can plug diagrams for the Fourier transforms of the odd and even subsequences into this diagram, and for the odd and even subsequences of these sequences. We ultimately get the diagram in figure 5.11.

2.6. Close examination of figure 5.11 reveals several features:

1. If a diagonal line from level i connects rows j and j', then the binary representations of j and j' are identical, except for the ith bit. (Here we are counting the bits from right to left — the number of a bit corresponds to the power of 2 that the bit represents.)

2. The Fourier Transforms from level i to level $i+1$ are performed with respect to a primitive 2^kth root of 1, $\eta_i = \omega^{2^k-i-1}$. This is because, as we move to the left in the diagram, the root of 1 being used is squared.
3. A line from level i to level $i+1$ has a coefficient attached to it that is \(\neq 1 \) if and only if the left end of this line is on a row r whose binary-representation has a 1 in position i. This is because in level i, the whole set of rows is subdivided into subranges of size 2^i. Rows whose number has a 1 in bit-position i represent the top-halves of these subranges. The top half of each subrange gets the Fourier Transform of the odd-subsequence, and this is multiplied by a suitable power of η_i, defined above.

4. A line from level i to level $i+1$ whose left end is in row r, and with the property that the binary representation of r has a 1 in bit-position i (so it has a nonzero power of η_i) has a coefficient of $\eta_i^{r'}$, where r' is the row number of the right end of the line. This is a direct consequence of equation (29) on page 187, where the power of ω was equal to the number of the subscript on the output. We also get:

- r' may be taken modulo 2^i, because we use it as the exponent of a 2^ith root of 1.
- If the line in question is horizontal, $r' \equiv r \mod 2^i$.
- If the line was diagonal, $r' \equiv \hat{r} \mod 2^i$, where \hat{r} has a binary-representation that is the same as that of r, except that the ith bit position has a 0 — see line 1, above.
- This power of η_i is equal to $\omega^{2^{k-i-1}r'}$, by line 2.

The remarks above imply that none of the observations are accidents of the fact that we chose a Fourier Transform of 8 data-items. It is normal practice to “unscramble” this diagram so the input-data is in ascending order and the output is permuted. We get the diagram in figure 5.12.

To analyze the effect of this “unscrambling” operation we use the description of the complete unshuffle operation in 2.5 on page 189.

Now we can describe the Fast Fourier Transform algorithm. We simply modify the general rule computing the power of ω in 2.6 on page 190. Suppose $n = 2^k$.

![Figure 5.12. “Unscrambled” FFT circuit.](image-url)
is the size of the sequences in question. We define functions \(e(r, j) \), \(c_0(r, j) \) and \(c_1(r, j) \) for all integers \(0 \leq r \leq k - 1 \) and \(0 \leq j < n \),

1. If the \(k \)-bit binary representation of \(j \) is \(b_{k-1} \cdots b_0 \), then \(e(r, j) \) is the number whose binary representation is \(b_{k-r-1}b_{k-r} \cdots b_{k-1}0 \cdots 0 \);
2. \(c_0(r, j) \) is a number whose \(k \)-bit binary representation is the same as that of \(j \), except that the \(k - r + 1 \)th bit is 0. In the scrambled diagram, we used the \(r \)th bit, but now the bits in the binary representation have been reversed.
3. \(c_1(r, j) \) is a number whose binary representation is the same as that of \(j \), except that the \(k - r + 1 \)th bit is 1. See the remark in the previous line.

Note that, for every value of \(r \), every number, \(i \), between 0 and \(n - 1 \) is equal to either \(c_0(r, i) \) or \(c_1(r, i) \).

Given this definition, the Fast Fourier Transform Algorithm is:

Algorithm 2.7. Under the assumptions above, let \(A = \{a_0, \ldots, a_{n-1}\} \) be a sequence of numbers. Define sequences \(\{F_{ij}\} \), \(0 \leq r \leq k - 1 \), \(0 \leq j \leq n - 1 \) via:

1. \(F_{0,i} = A \);
2. For all \(0 \leq j \leq n - 1 \),

\[
F_{t+1, c_0(t,j)} = F_{t, c_0(t,j)} + \omega^{e(t, c_0(t,j))} F_{t, c_1(t,j)}
\]

\[
F_{t+1, c_1(t,j)} = F_{t, c_0(t,j)} + \omega^{e(t, c_1(t,j))} F_{t, c_1(t,j)}
\]

Then the sequence \(F_{k,i} \) is equal to the shuffled Fourier Transform of \(A \):

\[
\mathcal{F}_\omega(A)(e(k,i)) = F_{kj}
\]

If we unshuffle this sequence, we get the Fourier Transform, \(\mathcal{F}_\omega(A) \) of \(A \).

We need to find an efficient way to compute the \(e(r, j) \)-functions. First, note that \(e(k, j) \) is just the result of reversing the binary representation of \(j \). Now consider \(e(k - 1, j) \): this is the result of taking the binary representation of \(j \), reversing it, deleting the first bit (the leftmost bit, in our numbering scheme) and adding a 0 on the right. But this is the result of doing a left-shift of \(e(k, j) \) and truncating the result to \(k \) bits by deleting the high-order bit. It is not hard to see that for all \(i \), \(e(i, j) \) is the result of a similar operation on \(e(i + 1, j) \). In the C language, we could write this as \((e(i+1,j) \mod n) \mod 2\).

Since we actually only need \(\omega^{e(r,j)} \), for various values of \(r \) and \(j \), we usually can avoid calculating the \(e(r, j) \) entirely. We will only calculate the \(e(k, *) \) and \(\omega^{e(k,*)} \). We will then calculate the remaining \(\omega^{e(r,j)} \) by setting \(\omega^{e(r,j)} = (\omega^{e(r-1,j)})^2 \). Taking these squares is the same as multiplying the exponents by 2 and reducing the result modulo \(n \).

The remaining functions that appear in this algorithm (namely \(c_0(*,*) \) and \(c_1(*,*) \)) are trivial to compute.

Table 5.1 gives some sample computations in the case where \(k = 3 \) and \(n = 8 \). Here is a sample program for implementing the Fast Fourier Transform. In spite of the comment above about not needing to calculate the \(e(r, j) \) for all values
of \(r \), we do so in this program. The reason is that it is easier to compute the powers of \(\omega \) directly (using sines and cosines) than to carry out the squaring-operation described above. See page 389 for an example of an FFT program that doesn’t compute all of the \(e(r,j) \).

```c
#include <stdio.h>
#include <math.h>
shape [8192]linear;
/* Basic structure to hold the data—items. */
struct compl
{
    double re;
    double im;
};
typedef struct compl complex;
/* Basic structure to hold the data—items. */

complex:linear in_seq;    /* Input data. */
complex:linear work_seq;  /* Temporary variables, and
    * output data */
int:linear e_vals[13];   /* Parallel array to hold
    * the values of the e(k,j) */
complex:linear omega_powers[13]; /* Parallel array to
    * hold the values of
    * omega^e(r,j). */

void main()
{
    int i, j;
    int k = 13;    /* log of number of
        * data—points. */
    int n = 8192; /* Number of data—points. */

    /*
    * This block of code sets up the e_vals and the
    * omega_powers arrays.
    */
```
with (linear)
{
 int i;
 int:linear p = pcoord(0);
 int:linear temp;
 e_vals[k-1]= 0;
 for (i = 0; i < n; i++)
 {
 i]in_seq.re = (double) i) / ((double) n;
 i]in_seq.im = 0.;
 }
 for (i = 0; i < k; i++)
 {
 e_vals[k-1]<<= 1;
 e_vals[k-1]%= p % 2;
 p >>= 1;
 }
 omega_powers[k - 1].re
 = cos(2.0 * M_PI * (double:linear) e_vals[k-1]/ (double) n);

 omega_powers[k - 1].im
 = sin(2.0 * M_PI * (double:linear) e_vals[k-1]/ (double) n);
 for (i = 1; i < k; i++)
 {
 e_vals[k - 1 - i] = (e_vals[k - i]<<< 1) % n;
 omega_powers[k - 1 - i].re
 = cos(2.0 * M_PI * (double:linear) e_vals[k - 1 - i]/ (double) n);
 omega_powers[k - 1 - i].im
 = sin(2.0 * M_PI * (double:linear) e_vals[k - 1 - i]/ (double) n);
 }
 work_seq.re = in_seq.re;
 work_seq.im = in_seq.im;
 p = pcoord(0);
 for (i = 0; i < k; i++)
 {
 complex:linear save;
 save.re = work_seq.re;
 save.im = work_seq.im;
 temp = p & (1 << (k-i-1))); /* Compute c0(r,i). The
 'k-i-1' is due to the fact
 that the number of the bits
 in the definition of c0(r,i)
 is from 1 to k, rather than
 k-1 to 0. */
 }
 where (p == temp)
{ int linear t = temp | (1 << (k - i - 1));
/* Compute c1(r,i). The
'(k-i-1) is due to the fact
that the number of the bits
in the definition of c0(r,i)
is from 1 to k, rather than
k-1 to 0. */
[temp]work_seq.re = [temp]save.re
 + [temp]omega_powers[i].re *[t]save.re
 - [temp]omega_powers[i].im *[t]save.im;
[temp]work_seq.im = [temp]work_seq.im
 + [temp]omega_powers[i].re *[t]save.im
 + [temp]omega_powers[i].im *[t]save.re;
[t]work_seq.re = [temp]save.re +
[t]omega_powers[i].re *[t]save.re
 - [t]omega_powers[i].im *[t]save.im;
[t]work_seq.im = [temp]save.im +
[t]omega_powers[i].re *[t]save.im
 + [t]omega_powers[i].im *[t]save.re;
}
}

with(linear)

where(pcoord(0)<n)
{
 save_seq.re=work_seq.re;
 save_seq.im=work_seq.im;
 [e_vals[k-1]]work_seq.re=save_seq.re;
 [e_vals[k-1]]work_seq.im=save_seq.im;
}
}

for (i = 0; i < n; i++)
{
 printf("Value %d, real part=%g\n", i,[i]work_seq.re);
 printf("Value %d, imaginary part=%g\n", i,[i]work_seq.im);
}
}

Now we will analyze the cost of doing these computations. The original Discrete Fourier Transform executes sequentially in \(O(n^2)\) time, and on a SIMD, PRAM it clearly executes in \(O(\lg n)\)-time, using \(O(n^2)\) processors. The main advantage in using the Fast Fourier Transform algorithm is that it reduces the number of processors required. On a SIMD, PRAM machine it clearly executes in \(O(\lg n)\)-time using \(n\) processors.

Exercises.
2.1. Express the c_n permutation defined in 2.5 on page 189 in terms of the
generic ASCEND or DESCEND algorithms on page 58.

2.2. The alert reader may have noticed that the FFT algorithm naturally fits
into the framework of the generic DESCEND algorithm on page 58. This implies
that we can find very efficient implementations of the FFT algorithm on the
network architectures of chapter 3 on page 57. Find efficient implementations of the
FFT on the hypercube and the cube-connected cycles architectures.

2.3. Equation (22) on page 182 implies a relationship between the Discrete
Fourier Transform and the coefficients in a Fourier Series. Suppose that it is known
(for some reason) that $A_k = 0$ for $|k| > n$. Also assume that $f(x)$ is an even function:
$f(x) = f(-x)$13. Show how to compute the nonzero coefficients of the Fourier
series for $f(x)$ from the Discrete Fourier Transform, performed upon some finite
set of values of $f(x)$.

2.4. Consider the number n that has been used throughout this section as the
size of the sequence being transformed (or the order of the polynomial being eval-
uated at principal roots of unity, or the order of the principal root of unity being
used). The Fast Fourier Transform algorithm gives a fast procedure for computing
Fourier Transforms when $n = 2^k$. Suppose, instead, that $n = 3^k$. Is there a fast
algorithm for computing the discrete Fourier Transform in this case? Hint: Given
a polynomial

$$p(x) = \sum_{i=0}^{3^k-1} a_i x^i$$

we can re-write it in the form

$$p(x) = u(x) + x v(x) + x^2 w(x)$$

where

$$u(x) = \sum_{i=0}^{3^k-1} a_{3i} x^{3i}$$

$$v(x) = \sum_{i=0}^{3^k-1} a_{3i+1} x^{3i}$$

$$w(x) = \sum_{i=0}^{3^k-1} a_{3i+2} x^{3i}$$

If such a modified Fast Fourier Transform algorithm exists, how does its execution
time compare with that of the standard Fast Fourier Transform?

2.5. Given a set of $n = 2^k$ numbers A_0, \ldots, A_{n-1}, we can define the Discrete
Cosine Transform (DCT) as follows:

$$c(A)_m = Z_m \sum_{j=0}^{n-1} A_j \cos \left(\frac{(2j+1)m\pi}{2n}\right)$$

13This implies that $A_k = A_{-k}$.
where
\[Z_m = \begin{cases}
1/\sqrt{2n} & \text{if } m = 0, \\
1 & \text{otherwise}
\end{cases} \]

It turns out that there is an inverse Discrete Cosine Transform, defined as follows:
\[A_j = \sum_{m=0}^{n-1} Z_m c(A)_m \cos \left(\frac{(2j + 1)m \pi}{2n} \right) \]

Now for the question: Is there a fast Discrete Cosine Transform? We are particularly interested in one with a good parallel implementation.

2.4. Eigenvalues of cyclic matrices.

In this section we will give a simple application of Discrete Fourier Transforms. It will be used in later sections of the book. In certain cases we can use Discrete Fourier Transforms to easily compute the eigenvalues of matrices.

Definition 2.8. An \(n \times n \) matrix \(A \) is called a cyclic matrix or circulant if there exists a function \(f \) such that
\[A_{i,j} = f(i - j \mod n) \]

Here, we assume the indices of \(A \) run from 0 to \(n - 1 \).\(^{14}\)

Note that cyclic matrices have a great deal of symmetry. Here is an example:
\[
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{pmatrix}
\]

It is not hard to see that the function \(f \) has the values: \(f(0) = 1, f(1) = 3, f(2) = 2 \).

In order to see the relationship between cyclic matrices and the Fourier Transform, we multiply a vector, \(v \) by the matrix \(A \) in the definition above:
\[
(Av)_i = \sum_{j=0}^{n-1} A_{i,j} v_j = \sum_{j=0}^{n-1} f(i - j \mod n) v_j
\]

so the act of taking the product of the vector by the matrix is the same a taking the convolution of the vector by the function \(f \) (see the definition of convolution on page 183).

It follows that we can compute the product of the vector by \(A \) via the following sequence of operations:

1. Select some primitive \(n \)th root of 1, \(\omega \)
2. Form the FFT of \(f \) with respect to \(\omega \):
 \[\{ \mathcal{F}_\omega(f)(0), \ldots, \mathcal{F}_\omega(f)(n - 1) \} \]

\(^{14}\)It is not hard to modify this definition to accommodate the case where they run from 1 to \(n \).
3. Form the FFT of v with respect to ω:
\[\{ \mathcal{F}_\omega(v)(0), \ldots, \mathcal{F}_\omega(v)(n-1) \} \]

4. Form the elementwise product of these two sequences:
\[\{ \mathcal{F}_\omega(f)(0) \cdot \mathcal{F}_\omega(v)(0), \ldots, \mathcal{F}_\omega(f)(n-1) \cdot \mathcal{F}_\omega(v)(n-1) \} \]

5. This resulting sequence is the Fourier Transform of Av:
\[\{ \mathcal{F}_\omega(Av)(0), \ldots, \mathcal{F}_\omega(Av)(n-1) \} \]

While this may seem to be a convoluted way to multiply a vector by a matrix, it is interesting to see what effect this has on the basic equation for the eigenvalues and eigenvectors of A —

\[Av = \lambda v \]

becomes
\[\mathcal{F}_\omega(f)(i) \cdot \mathcal{F}_\omega(v)(i) = \lambda \mathcal{F}_\omega(v)(i) \]

for all $i = 0, \ldots, n-1$ (since λ is a scalar). Now we will try to solve these equations for values of λ and nonzero vectors $\mathcal{F}_\omega(v)(*)$. It is easy to see what the solution is if we re-write the equation in the form:

\[(\mathcal{F}_\omega(f)(i) - \lambda) \cdot \mathcal{F}_\omega(v)(i) = 0 \]

for all i. Since there is no summation here, there can be no cancellation of terms, and the only way these equations can be satisfied is for

1. $\lambda = \mathcal{F}_\omega(f)(i)$ for some value of i;
2. $\mathcal{F}_\omega(v)(i) = 1$ and $\mathcal{F}_\omega(v)(j) = 0$ for $i \neq j$.

This determines the possible values of λ, and we can also solve for the eigenvectors associated with these values of λ by taking an inverse Fourier Transform of the $\mathcal{F}_\omega(v)(*)$ computed above.

Theorem 2.9. Let A be an $n \times n$ cyclic matrix with $A_{i,j} = f(i - j \mod n)$. Then the eigenvalues of A are given by

\[\lambda_i = \mathcal{F}_\omega(f)(i) \]

and the eigenvector corresponding to the eigenvalue λ_i is

\[\mathcal{F}_\omega^{-1}(\delta_i,*)/n \]

where $\delta_{i,*}$ is the sequence $\{\delta_{i,0}, \ldots, \delta_{i,n-1}\}$ and

\[\delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \]

Recall that $\mathcal{F}_\omega^{-1}(*)/n$ is just the inverse Fourier Transform — see 2.2 on page 185.

We will conclude this section with an example that will be used in succeeding material.

Definition 2.10. For all $n > 1$ define the $n \times n$ matrix $\mathcal{Z}(n)$ via:

\[\mathcal{Z}(n)_{i,j} = \begin{cases} 1 & \text{if } i - j = \pm 1 \mod n \\ 0 & \text{otherwise} \end{cases} \]
This is clearly a cyclic matrix with \(f \) given by

\[
f(i) = \begin{cases}
1 & \text{if } i = 1 \text{ or } i = n - 1 \\
0 & \text{otherwise}
\end{cases}
\]

We will compute the eigenvalues and eigenvectors of this \(Z(n) \). Let \(\omega = e^{2\pi i/n} \) and compute the Fourier Transform of \(f \) with respect to \(\omega \):

\[
\lambda_i = \mathcal{F}_{\omega}(f)(j) = e^{2\pi ij/n} + e^{2\pi ij(n-1)/n} = e^{2\pi ij/n} + e^{-2\pi ij/n}
\]

Since \(n - 1 \equiv -1 \mod n \)

\[
= 2 \cos(2\pi j/n)
\]

since \(\cos(x) = e^{ix} + e^{-ix}/2 \). Note that these eigenvalues are not all distinct — the symmetry of the cosine function implies that

\[
(32) \quad \lambda_i = \lambda_{n-i} = 2 \cos(2\pi i/n)
\]

so there are really only \(\left[\frac{n}{2} \right] \) distinct eigenvalues. Now we compute the eigenvectors associated with these eigenvalues. The eigenvector associated with the eigenvalue \(\lambda_j \) is the inverse Fourier Transform of \(\delta_j \). This is

\[
v(j) = \{e^{-2\pi ij 0/n}/n, \ldots, e^{-2\pi ij(n-1)/n}/n\} = \{1, \ldots, e^{-2\pi ij(n-1)/n}/n\}
\]

Since \(\lambda_j = \lambda_{n-j} \), so these are not really different eigenvalues, any linear combination of \(v(j) \) and \(v(n-j) \) will also be a valid eigenvector\(^{15}\) associated with \(\lambda_j \) — the resulting eigenspace is 2-dimensional. If we don’t like to deal with complex-valued eigenvectors we can form linear combinations that cancel out the imaginary parts:

\[
n(v(j)/2 + v(n-j)/2)_k = \left(e^{-2\pi ij k/n} + e^{-2\pi ij(n-k)/n} \right)/2 = \cos(2\pi j/k/n)
\]

and

\[
n(-v(j)/2 + v(n-j)/2i)_k = \left(-e^{-2\pi ij k/n} + e^{-2\pi ij(n-k)/n} \right)/2 = \sin(2\pi j/k/n)
\]

so we may use the two vectors

\[
(33) \quad w(j) = \{1, \cos(2\pi j/n), \cos(4\pi j/n), \ldots, \cos(2\pi j(n-1)/n)\}
\]

\[
(34) \quad w'(j) = \{0, \sin(2\pi j/n), \sin(4\pi j/n), \ldots, \sin(2\pi j(n-1)/n)\}
\]

as the basic eigenvectors associated with the eigenvalue \(\lambda_j \).

\(^{15}\) See exercise 1.1 on page 146 and its solution in the back of the book.
Notice that the formula for the eigenvectors of A in 2.9 contains no explicit references to the function f. This means that all cyclic matrices have the same eigenvectors16, namely

$$v(j) = \{1, \ldots, e^{-2\pi ij/(n-1)/n}\}$$

(our conversion of this expression into that in (34) made explicit use of the fact that many of the eigenvalues of $Z(n)$ were equal to each other).

Exercises.

2.6. Compute the eigenvalues and eigenvectors of the matrix

$$\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{pmatrix}$$

2.7. Compute the eigenvalues and eigenvectors of the matrix

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

2.8. Recall that the Discrete Fourier Transform can be computed with respect to an arbitrary primitive n^{th} root of 1. What effect does varying this primitive n^{th} root of 1 have on the computation of the eigenvalues and eigenvectors of an $n \times n$ cyclic matrix?

2.9. Give a formula for the determinant of a cyclic matrix.

2.10. Give a formula for the spectral radius of the matrices $Z(n)$.

3. The JPEG Algorithm

In this section we will discuss an important application of Discrete Fourier Transforms to image compression. In computer graphics, bitmapped color images tend to be very large. In fact they are usually so large that transmitting the original bitmapped image over a network (like Ethernet) is usually prohibitive. Consequently, it is essential to have good algorithms for compressing and decompressing these images. In this context, an algorithm is ‘good’ if it:

- Has a minimal loss of information.
- Is very fast.

16They don’t, however, have the same eigenvalues.
In the late 1980’s a joint ISO/CCITT committee, called the Joint Photographic Experts Group (JPEG), devised a widely used algorithm for image compression — see [169] as a general reference. It is highly efficient — users can easily achieve compression ratios of 10 to 1 (in some cases it is possible to achieve ratios of 50 to 1). Nevertheless, there are very fast implementations of the algorithm in existence. In fact many developers hope to develop a form of the JPEG algorithm for animated images, that will run in real-time. Such an algorithm would require parallel computing.

The JPEG standard for image compression actually contains four algorithms. We will only consider the sequential encoding algorithm — the only JPEG algorithm widely implemented as of 1994. One interesting feature of this algorithm is that it is lossy — that is the procedure of compressing an image and then decompressing it will lose some graphic information. The JPEG algorithm is designed in such a way that

- The user can control the amount of information lost (when no information is lost, the amount of compression achieved is minimal, however).
- The kind of information lost tends to be visually negligible. In other words the algorithm loses information in such a way that the human eye usually doesn’t miss it.

The JPEG compression algorithm involves the following steps:

1. Subdivide the picture into 8×8 arrays of pixels.
2. Perform a two-dimensional Discrete Fourier Transform on each of these arrays. This is related to the discrete Fourier Transform — its formula appears in equation (31) on page 196. There is a fast parallel algorithm for this — see algorithm 0.1 on page 438.
3. ‘Quantize’ the resulting coefficients. In practice, this involves simply dividing the coefficients by a quantization value and rounding the result to an integer. This step is lossy, and the size of the quantization coefficient determines how much information is lost.
4. After the previous step, most of the coefficients in the 8×8 array will turn out to be zero. Now, compress the array by Huffman encoding. This step results in a great deal of further compression.

An examination of the steps listed above quickly shows several possible avenues for parallelizing the JPEG algorithm:

1. We might be able to parallelize step 2, using the FFT algorithm or some variation of it. It isn’t immediately clear how much of an improvement this will bring since we are only working with an 8×8 array. Nevertheless, this bears looking into.
2. We can perform step 2 on each of the 8×8 blocks in parallel. This is simple obvious parallelism — yet it can speed up the compression algorithm by a factor of many thousands.

4. Wavelets

4.1. Background. In this section, we will discuss a variation on Fourier Expansions that has gained a great deal of attention in recent years. It has many applications to image analysis and data-compression. We will only give a very
abbreviated overview of this subject — see [110] and [152] for a more complete description.

Recall the Fourier Expansions

\[f(x) = \sum_{k=0}^{\infty} a_k \sin(kx) + b_k \cos(kx) \]

The development of wavelets was originally motivated by efforts to find a kind of Fourier Series expansion of transient phenomena\(^{17}\). If the function \(f(x) \) has large spikes in its graph, the Fourier series expansion converges very slowly. This makes some intuitive sense — it is not surprising that it is difficult to express a function with sharp transitions or discontinuities in terms of smooth functions like sines and cosines. Furthermore, if \(f(x) \) is localized in space (i.e., vanishes outside an interval) it may be hard to expand \(f(x) \) in terms of sines and cosines, since these functions take on nonzero values over the entire \(x \)-axis.

We solve this problem by trying to expand \(f(x) \) in series involving functions that themselves may have such spikes and vanish outside of a small interval. These functions are called wavelets. The term “wavelet” comes from the fact that these functions are vanish outside an interval. If a periodic function like \(\sin(x) \) has a sequence of peaks and valleys over the entire \(x \)-axis, we think of this as a “wave”, we think of a function with, say only small number of peaks or valleys, as a wavelet — see figure 5.13. Incidentally, the depiction of a wavelet in figure 5.13 is accurate in that the wavelet is “rough” — in many cases, wavelets are fractal functions, for reasons we will discuss a little later.

If we want to expand arbitrary functions like \(f(x) \) in terms of wavelets, \(w(x) \), like the one in figure 5.13, several problems are immediately apparent:

1. How do we handle functions with spikes “sharper” than that of the main wavelet? This problem is solved in conventional Fourier series by multiplying the variable \(x \) by integers in the expansion. For instance, \(\sin(nx) \)

\(^{17}\)Wavelet expansions grew out of problems related to seismic analysis — see [62].
has peaks that are $1/n^{th}$ as wide as the peaks of $\sin(x)$. For various reasons, the solution that is used in wavelet-expansions, is to multiply x by a power of 2 — i.e., we expand in terms of $w(2^j x)$, for different values of j. This procedure of changing the scale of the x-axis is called dilation.

2. Since $w(x)$ is only nonzero over a small finite interval, how do we handle functions that are nonzero over a much larger range of x-values? This is a problem that doesn’t arise in conventional Fourier series because they involve expansions in functions that are nonzero over the whole x-axis. The solution use in wavelet-expansions is to shift the function $w(2^j x)$ by an integral distance, and to form linear combinations of these functions: $\sum_k w(2^j x - k)$. This is somewhat akin to taking the individual wavelets $w(2^j x - k)$ and assemble them together to form a wave. The reader may wonder what has been gained by all of this — we “chopped up” a wave to form a wavelet, and we are re-assembling these wavelets back into a wave. The difference is that we have direct control over how far this wave extends — we may, for instance, only use a finite number of displaced wavelets like $w(2^j x - k)$.

The upshot of this discussion is that a general wavelet expansion of of a function is doubly indexed series like:

$$f(x) = \sum_{-\infty < j < \infty} \sum_{-1 \leq k < \infty} A_{jk} w_{jk}(x) \tag{35}$$

where

$$w_{jk}(x) = \begin{cases} w(2^j x - k) & \text{if } j \geq 0 \\ \phi(x - k) & \text{if } j = -1 \end{cases}$$

The function $w(x)$ is called the basic wavelet of the expansion and $\phi(x)$ is called the scaling function associated with $w(x)$.

We will begin by describing methods for computing suitable functions $w(x)$ and $\phi(x)$. We will usually want conditions like the following to be satisfied:

$$\int_{-\infty}^{\infty} w_{jk_1}(x) w_{jk_2}(x) \, dx = \begin{cases} 2^{-j_1} & \text{if } j_1 = j_2 \text{ and } k_1 = k_2 \\ 0 & \text{otherwise} \end{cases} \tag{36}$$

—these are called orthogonality conditions. Compare these to equation (20) on page 182.

The reason for these conditions is that they make it very easy (at least in principle) to compute the coefficients in the basic wavelet expansion in equation (35): we simply multiply the entire series by $w(2^j x - k)$ or $\phi(x - i)$ and integrate. All but one of the terms of the result vanish due to the orthogonality conditions (equation (36)) and we get:

$$A_{jk} = \frac{\int_{-\infty}^{\infty} f(x) w_{jk}(x) \, dx}{\int_{-\infty}^{\infty} w_{jk}(x)^2 \, dx} = 2^j \int_{-\infty}^{\infty} f(x) \phi(x) \, dx \tag{37}$$

In order to construct functions that are only nonzero over a finite interval of the x-axis, and satisfy the basic orthogonality condition, we carry out a sequence of steps. We begin by computing the scaling function associated with the wavelet $w(x)$.

A scaling function for a wavelet must satisfy the conditions\(^{18}\):

1. Its support (i.e., the region of the \(x\)-axis over which it takes on nonzero values) is some finite interval. This is the same kind of condition that wavelets themselves must satisfy. This condition is simply a consequence of the basic concept of a wavelet-series.

2. It satisfies the basic dilation equation:

\[
\phi(x) = \sum_{i=-\infty}^{\infty} \xi_i \phi(2x - i)
\]

Note that this sum is not as imposing as it appears at first glance — the previous condition implies that only a finite number of the \(\{\xi_i\}\) can be nonzero. We write the sum in this form because we don’t want to specify any fixed ranges of subscripts over which the \(\{\xi_i\}\) may be nonzero.

This condition is due to Daubechies — see [42]. It is the heart of her theory of wavelet-series. It turns out to imply that the wavelet-expansions are orthogonal and easy to compute.

3. Note that any multiple of a solution of equation (38) is also a solution. We select a preferred solution by imposing the condition

\[
\int_{-\infty}^{\infty} \phi(x) \, dx = 1
\]

One points come to mind when we consider these conditions from a computer science point of view:

Equation (38), the finite set of nonzero values of \(\phi(x)\) at integral points, and the finite number of nonzero \(\{\xi_i\}\) completely determine \(\phi(x)\). They determine it at all dyadic points (i.e., values of \(x\) of the form \(p/q\), where \(q\) is a power of 2). For virtually all modern computers, such points are the only ones that exist, so \(\phi(x)\) is completely determined.

Of course, from a function theoretic point of view \(\phi(x)\) is far from being determined by its dyadic values. What is generally done is to perform an iterative procedure: we begin by setting \(\phi_0(x)\) equal to some simple function like the box function equal to 1 for \(0 \leq x < 1\) and 0 otherwise. We then define

\[
\phi_{i+1}(x) = \sum_{k=-\infty}^{\infty} \xi_k \phi_i(2x - k)
\]

It turns out that this procedure converges to a limit \(\phi(x) = \phi_\infty(x)\), that satisfied equation (38) exactly. Given a suitable scaling-function \(\phi(x)\), we define the associated wavelet \(w(x)\) by the formula

\[
w(x) = \sum_{i=-\infty}^{\infty} (-1)^i \xi_{1-i} \phi(2x - i)
\]

We will want to impose some conditions upon the coefficients \(\{\xi_i\}\).

DEFINITION 4.1. The defining coefficients of a system of wavelets will be assumed to satisfy the following two conditions:

\(^{18}\)Incidentally, the term scaling function, like the term wavelet refers to a whole class of functions that have certain properties.
1. **Condition O**: This condition implies the orthogonality condition of the wavelet function (equation (36) on page 203):

\[
\sum_{k>\infty} \xi_k \xi_{k-2m} = \begin{cases}
2 & \text{if } m = 0 \\
0 & \text{otherwise}
\end{cases}
\]

The orthogonality relations mean that if a function can be expressed in terms of the wavelets, we can easily calculate the coefficients involved, via equation (37) on page 203.

2. **Condition A**: There exists a number \(p > 1 \), called the degree of smoothness of \(\phi(x) \) and the associated wavelet \(w(x) \), such that

\[
\sum_{k>\infty} (-1)^{k} \xi_{k} = 0, \text{ for all } 0 \leq m \leq p - 1
\]

It turns out that wavelets are generally fractal functions — they are not differentiable unless their degree of smoothness is greater than 2.

This condition guarantees that the functions that interest us can be expanded in terms of wavelets. If \(\phi(x) \) is a scaling function with a degree of smoothness equal to \(p \), it is possible to expand the functions \(1, x, \ldots, x^{p-1} \) in terms of series like

\[
\sum_{j>\infty} a_{n} \phi(x - n)
\]

In order for wavelets to be significant to us, they (and their scaling functions) must be derived from a sequence of coefficients \(\{\xi_{i}\} \) with a degree of smoothness greater than 0.

Daubechies discovered a family of wavelets \(W_2, W_4, W_6, \ldots \) whose defining coefficients (the \(\{\xi_{i}\} \)) satisfy these conditions in [42]. All of these wavelets are based upon scaling functions that result from iterating the box function

\[
\phi_0(x) = \begin{cases}
1 & \text{if } 0 \leq x < 1 \\
0 & \text{otherwise}
\end{cases}
\]

in the dilation-equation (40) on page 204. The different elements of this sequence of wavelets are only distinguished by the sets of coefficients used in the iterative procedure for computing \(\phi(x) \) and the corresponding wavelets.

(Note: this function, must vanish at one of the endpoints of the interval \([0, 1]\).)

This procedure for computing wavelets (i.e., plugging the box function into equation (38) and repeating this with the result, etc.) is not very practical. It is computationally expensive, and only computes approximations to the desired result.

Fortunately, there is a simple, fast, and exact algorithm for computing wavelets at all dyadic points using equation (38) and the values of \(\phi(x) \) at integral points. Furthermore, from the perspective of computers, the dyadic points are the only

19. This term is deliberately vague.
20. This slow procedure has theoretical applications — the proof that the wavelets are orthogonal (i.e., satisfy equation (36) on page 203) is based on this construction.
ones that exist. We just perform a recursive computation of \(\phi(x) \) at points of the form \(i/2^{k+1} \) using the values at points of the form \(i/2^k \) and the formula

\[
\phi(i/2^{k+1}) = \sum_{-\infty < m < \infty} \xi_m \phi(i/2^k - m)
\]

It is often possible for the dilation-equation to imply relations between the values of a scaling function at distinct integral points. We must choose the value at these points in such a way as to satisfy the dilation-equation.

Example 4.2. Daubechies' \(W_2 \) Wavelet. This is the simplest element of the Daubechies sequence of wavelets. This family is defined by the fact that the coefficients of the dilation-equation are \(\xi_0 = \xi_1 = 1 \), and all other \(\xi_i = 0 \).

In this case \(\phi(x) = \phi_0(x) \), the box function. The corresponding wavelet, \(W_2(x) \) has been described long before the development of wavelets — it is called the Haar function. It is depicted in figure 5.14.

Example 4.3. Daubechies' \(W_4 \) Wavelet. Here we use the coefficients \(\xi_0 = (1 + \sqrt{3})/4, \xi_1 = (3 + \sqrt{3})/4, \xi_2 = (3 - \sqrt{3})/4, \) and \(\xi_3 = (1 - \sqrt{3})/4 \) in the dilation-equation. This wavelet has smoothness equal to 2, and its scaling function \(\phi(x) \) is called \(D_4(x) \). We can compute the scaling function, \(D_4(x) \) at the dyadic points by the recursive procedure described above. We cannot pick the values of \(\phi(1) \) and \(\phi(2) \) arbitrarily because they are not independent of each other in the equation for \(\phi(x) = D_4(x) \).

They satisfy the equations

\[
\phi(1) = \frac{3 + \sqrt{3}}{4} \phi(1) + \frac{1 + \sqrt{3}}{4} \phi(2)
\]
\[
\phi(2) = \frac{1 - \sqrt{3}}{4} \phi(1) + \frac{3 - \sqrt{3}}{4} \phi(2)
\]

This is an eigenvalue problem\(^{21}\) like

\[
\Xi \chi = \lambda \chi
\]

\(^{21}\)See 1.13 on page 140 for the definition of an eigenvalue.
Figure 5.15. Daubechies degree-4 scaling function

Figure 5.16. Daubechies degree-4 wavelet
where x is the vector composed of $\phi(1)$ and $\phi(2)$, and Ξ is the matrix

$$
\begin{pmatrix}
\frac{3+\sqrt{3}}{4} & \frac{1+\sqrt{3}}{4} \\
\frac{1-\sqrt{3}}{4} & \frac{3-\sqrt{3}}{4}
\end{pmatrix}
$$

The problem only has a solution if $\lambda = 1$ is a valid eigenvalue of Ξ — in this case the correct values of $\phi(1)$ and $\phi(2)$ are given by some scalar multiple of the eigenvector associated with the eigenvalue 1.

This matrix (Ξ) does have an eigenvalue of 1, and its associated eigenvector is

$$
\begin{pmatrix}
\frac{1+\sqrt{3}}{2} \\
\frac{1-\sqrt{3}}{2}
\end{pmatrix}
$$

and these become, from top to bottom, our values of $\phi(1)$ and $\phi(2)$, respectively. The scaling function, $\phi(x)$, is called $D_4(x)$ in this case\footnote{In honor of Daubechies.} and is plotted in figure 5.15.

Notice the fractal nature of the function. It is actually much more irregular than it appears in this graph. The associated wavelet is called W_4 and is depicted in figure 5.16.

EXERCISES.

4.1. Write a program to compute $D_4(x)$ and $W_4(x)$ at dyadic points, using the recursive algorithm described above. What is the running-time of the algorithm? Generally we measure the extent to which $D_4(x)$ has been computed by measuring the “fineness of the mesh” upon which we know the values of this function — in other words, $1/2^n$.

4.2. What is the execution-time of a parallel algorithm for computing $\phi(x)$ in general?

4.2. Discrete Wavelet Transforms. Now we are in a position to discuss how one does a discrete version of the wavelet transform. We will give an algorithm for computing the wavelet-series in equation (35) on page 203 up to some finite value of j — we will compute the $A_{j,k}$ for $j \leq p$. We will call the parameter p the fineness of mesh of the expansion, and 2^{-p} the mesh-size. The algorithm that we will discuss, are closely related to the Mallat pyramid algorithm, but not entirely identical to it.
DEFINITION 4.4. Define $B_{r,j}$ by

$$B_{r,j} = 2^r \int_{-\infty}^{\infty} \phi(2^r x - j) f(x) \, dx$$

where $0 \leq r \leq p$ and $-\infty < j < \infty$.

These quantities are important because they allow us to compute the coefficients of the wavelet-series.

In general, the $B_{r,j}$ are nonzero for at most a finite number of values of j:

PROPOSITION 4.5. In the notation of 4.4, above, suppose that $f(x)$ is only nonzero on the interval $a \leq x \leq b$ and $\phi(x)$ is only nonzero on the interval $0 \leq x \leq R$. Then $B_{r,j} = 0$ unless $L(r) \leq j \leq U(r)$, where $L(r) = [2^r a - R]$ and $U(r) = [2^r b]$.

We will follow the convention that $L(-1) = [a - R]$, and $U(-1) = [b]$

PROOF. In order for the integral 4.4 to be nonzero, it is at least necessary for the domains in which $f(x)$ and $\phi(2^r x - j)$ are nonzero to intersect. This means that

$$0 \leq 2^r x - j \leq R$$
$$a \leq x \leq b$$

If we add j to the first inequality, we get:

$$j \leq 2^r x \leq j + R$$

or

$$2^r x - R \leq j \leq 2^r x$$

The second inequality implies the result. □

The first thing to note is that the quantities $B_{p,j}$ determine the $B_{r,j}$ for all values of r such that $0 \leq r < p$:

PROPOSITION 4.6. For all values of $r \leq p$

$$B_{r,j} = \sum_{m=-\infty}^{\infty} \xi_{m-2j} B_{r+1,m} / 2$$

PROOF. This is a direct consequence of the basic dilation equation (38) on page 204:

$$B_{r,j} = 2^r \int_{-\infty}^{\infty} \phi(2^r x - j) f(x) \, dx$$

$$= 2^r \int_{-\infty}^{\infty} \sum_{s=-\infty}^{\infty} \xi_s \phi(2(2^r x - j) - s) f(x) \, dx$$

$$= 2^r \int_{-\infty}^{\infty} \sum_{s=-\infty}^{\infty} \xi_s \phi(2^{r+1} x - 2j - s) f(x) \, dx$$

setting $m = 2j + s$

$$= 2^r \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \xi_{m-2j} \phi(2^{r+1} x - m) f(x) \, dx$$

$$= 2^r \sum_{m=-\infty}^{\infty} \xi_{m-2j} \int_{-\infty}^{\infty} \phi(2^{r+1} x - m) f(x) \, dx$$

□
The definition of \(w(x) \) in terms of \(\phi(x) \) implies that

Proposition 4.7. Let \(A_{r,k} \) denote the coefficients of the wavelet-series, as defined in equation (37) on page 203. Then

\[
A_{r,k} = \begin{cases}
\sum_{m > -\infty}^\infty (-1)^m \xi_{1-m+2k} B_{r+1,m} & \text{if } r \geq 0 \\
B_{-1,k} & \text{if } r = -1
\end{cases}
\]

Proof. This is a direct consequence of equation (41) on page 204. We take the definition of the \(A_{r,k} \) and plug into equation (41):

\[
A_{r,k} = 2^r \int_{-\infty}^\infty f(x)w(2^r x - k) \, dx \\
= 2^r \int_{-\infty}^\infty f(x) \sum_{s > -\infty}^\infty (-1)^s \xi_{1-s} \phi(2^r x - k - s) \, dx \\
= 2^r \int_{-\infty}^\infty f(x) \sum_{s > -\infty}^\infty (-1)^s \xi_{1-s} \phi(2^{r+1} x - 2k - s) \, dx \\
\text{now we set } m = 2k + s \\
= 2^r \int_{-\infty}^\infty f(x) \sum_{m > -\infty}^\infty (-1)^m \xi_{1-m+2k} \phi(2^{r+1} x - m) \, dx \\
= 2^r \sum_{m > -\infty}^\infty (-1)^m \xi_{1-m+2k} \int_{-\infty}^\infty f(x) \phi(2^{r+1} x - m) \, dx
\]

\[\square\]

These results motivate the following definitions:

Definition 4.8. Define the following two matrices:

1. \(L(r)_{ij} = \xi_{j-i-2} / 2 \).
2. \(H(r)_{ij} = (-1)^j \xi_{1-j-2i} / 2 \).

Here \(i \) runs from \(\mathcal{L}(r-1) \) to \(\mathcal{U}(r-1) \) and \(j \) runs from \(\mathcal{L}(r) \) to \(\mathcal{U}(r) \), in the notation of 4.5.

For instance, if we are working with the Daubechies wavelet, \(W_d(x) \), and \(p = 3, a = 0, b = 1, R = 2 \), then \(L(3) = -2, \mathcal{U}(3) = 8 \) and

\[
L(3) = \begin{pmatrix}
\frac{3-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} & \frac{3-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} & \frac{3-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} & \frac{3-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} & \frac{3-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} & \frac{3-\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1+\sqrt{3}}{2} & \frac{3+\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1+\sqrt{3}}{2}
\end{pmatrix}
\]
This algorithm computes a wavelet-expansion of the function $f(x)$ with mesh-size 2^{-p}.

Input: The quantities $\{B_{p+1,j}\}$, where j runs from $L(p+1)$ to $U(p+1)$. There are $n = [2^{p+1}(b-a)+R]$ such inputs (in the notation of 4.5 on page 209);

Output: The values of the $A_{k,j}$ for $-1 \leq k \leq p$, and, for each value of k, j runs from $L(k)$ to $U(k)$. There are approximately $[2^{p+1}(b-a)+R]$ such outputs.

```
for k ← p down to 1 do
    Compute $B_{k,s} ← L(k+1)B_{k+1,s}$
    Compute $A_{k,s} ← H(k+1)B_{k+1,s}$
endfor
```

Here, the arrays L and H are defined in 4.8 above. The array $B_{k,s}$ has half as many nonzero entries as $B_{k+1,s}$.

Since the number of nonzero entries in each row of the $L(\ast)$ and $H(\ast)$ arrays is so small, we generally incorporate this number in the constant of proportionality in estimating the execution-time of the algorithm.

With this in mind, the sequential execution-time of an iteration of this algorithm is $O(2^k)$. If we have 2^{p+1} processors available, the parallel execution-time (on a CREW-SIMD computer) is constant.

The total sequential execution-time of this algorithm is $O(n)$ and the total parallel execution-time (on a CREW-SIMD computer with n processors) is $O(\log n)$.

The $A_{k,*}$ are, of course, the coefficients of the wavelet-expansion. The only elements of this algorithm that look a little mysterious are the quantities $B_{p+1,j}$.

\[
B_{p+1,j} = 2^{p+1} \int_{-\infty}^{\infty} \phi(2^{p+1}x-j)f(x) \, dx
\]

First we note that $\int_{-\infty}^{\infty} \phi(u) \, du = 1$ (by equation (39) on page 204), so

\[
\int_{-\infty}^{\infty} \phi(2^{p+1}x-j) \, dx = 2^{-1(p+1)}
\]

(set $u = 2^{p+1} - j$, and $dx = 2^{-(p+1)}du$) and

\[
B_{p+1,j} = \frac{\int_{-\infty}^{\infty} \phi(2^{p+1}x-j)f(x) \, dx}{\int_{-\infty}^{\infty} \phi(2^{p+1}x-j) \, dx}
\]

so that $B_{p+1,j}$ is nothing but a weighted average of $f(x)$ weighted by the function $\phi(2^{p+1}x-j)$. Now note that this weighted average is really being taken over a small interval $0 \leq 2^{p+1}x-j \leq R$, where $[0,R]$ is the range of values over which
212 5. NUMERICAL ALGORITHMS

\(\phi(x) \neq 0 \). This is always some finite interval — for instance if \(\phi(x) = D_4(x) \) (see figure 5.15 on page 207), this interval is \([0, 3]\). This means that \(x \) runs from \(j2^{-(p+1)} \) to \((j + R)2^{-(p+1)}\).

At this point we make the assumption:

The width of the interval \([j2^{-(p+1)}, (j + R)2^{-(p+1)}]\), is small enough that \(f(x) \) doesn’t vary in any appreciable way over this interval. Consequently, the weighted average is equal to \(f(j2^{-(p+1)}) \).

So we begin the inductive computation of the \(A_{k,j} \) in 4.9 by setting \(B_{p+1,j} = f(j/2^{p+1}) \). We regard the set of values \(\{f(j/2^{p+1})\} \) with \(0 \leq j < 2^{p+1} \) as the inputs to the discrete wavelet transform algorithm.

The output of the algorithm is the set of wavelet-coefficients \(\{A_{k,j}\} \), with \(-1 \leq k \leq p, -\infty < j < \infty \). Note that \(j \) actually only takes on a finite set of values — this set is usually small and depends upon the type of wavelet under consideration. In the case of the Haar wavelet, for instance \(0 \leq j \leq 2^k - 1 \), if \(k \leq 0 \), and \(j = 0 \) if \(k = -1 \). In the case of the Daubechies \(W_4 \) wavelet this set is a little larger, due to the fact that there are more nonzero defining coefficients \(\{\xi_i\} \).

Now we will give a fairly detailed example of this algorithm. Let \(f(x) \) be the function defined by:

\[
 f(x) = \begin{cases}
 0 & \text{if } x \leq 0 \\
 x & \text{if } 0 < x \leq 1 \\
 0 & \text{if } x > 1
\end{cases}
\]

We will expand this into a wavelet-series using the degree-4 Daubechies wavelet defined in 4.3 on page 206. We start with mesh-size equal to \(2^{-5} \), so \(p = 4 \), and we define \(B_{5,i} \) by

\[
 B_{5,i} = \begin{cases}
 0 & \text{if } i \leq 0 \\
 i/32 & \text{if } 1 \leq i \leq 32 \\
 0 & \text{if } i > 32
\end{cases}
\]

In the present case, the looping phase of algorithm 4.9 involves the computation:

\[
 B_{k,i} = \frac{1 + \sqrt{3}}{8} B_{k+1,2i} + \frac{3 + \sqrt{3}}{8} B_{k+1,2i+1} + \frac{3 - \sqrt{3}}{8} B_{k+1,2i+2} + \frac{1 - \sqrt{3}}{8} B_{k+1,2i+3}
\]

\[
 A_{k,i} = \frac{1 - \sqrt{3}}{8} B_{k+1,2i-2} - \frac{3 - \sqrt{3}}{8} B_{k+1,2i-1} + \frac{3 + \sqrt{3}}{8} B_{k+1,2i} - \frac{1 + \sqrt{3}}{8} B_{k+1,2i+1}
\]

This can be done in constant parallel time (i.e., the parallel execution-time is independent of the number of data-points).
4. WAVELETS

- **Iteration 1:** The $B_{4,*}$ and the wavelet-coefficients, $A_{4,*}$ are all zero except for the following cases:

 \[
 B_{4,-1} = \frac{1}{256} - \frac{\sqrt{3}}{256} \]

 \[
 B_{4,i} = \frac{4j + 3 - \sqrt{3}}{64} \quad \text{for } 0 \leq j \leq 14
 \]

 \[
 B_{4,15} = \frac{219}{256} + \frac{29\sqrt{3}}{256}
 \]

 \[
 B_{4,16} = 1/8 + \frac{\sqrt{3}}{8}
 \]

 \[
 A_{4,0} = -\frac{1}{256} - \frac{\sqrt{3}}{256}
 \]

 \[
 A_{4,16} = \frac{33}{256} + \frac{33\sqrt{3}}{256}
 \]

 \[
 A_{4,17} = 1/8 - \frac{\sqrt{3}}{8}
 \]

 Now we can calculate $B_{3,*}$ and $A_{3,*}$:

 - **Iteration 2:**

 \[
 B_{3,-2} = \frac{1}{512} - \frac{\sqrt{3}}{1024}
 \]

 \[
 B_{3,-1} = \frac{11}{256} - \frac{29\sqrt{3}}{1024}
 \]

 \[
 B_{3,j} = \frac{8j + 9 - 3\sqrt{3}}{64} \quad \text{for } 0 \leq j \leq 5
 \]

 \[
 B_{3,6} = \frac{423}{512} - \frac{15\sqrt{3}}{1024}
 \]

 \[
 B_{3,7} = \frac{121}{256} + \frac{301\sqrt{3}}{1024}
 \]

 \[
 B_{3,8} = 1/16 + \frac{\sqrt{3}}{32}
 \]

 \[
 A_{3,-1} = \frac{\sqrt{3}}{1024}
 \]

 \[
 A_{3,0} = \frac{1}{1024} - \frac{5\sqrt{3}}{512}
 \]

 \[
 A_{3,7} = \frac{33}{1024}
 \]

 \[
 A_{3,8} = \frac{\sqrt{3}}{512} - \frac{65}{1024}
 \]

 \[
 A_{3,9} = -1/32
 \]

 - **Iteration 3:**

 \[
 B_{2,-2} = \frac{35}{2048} - \frac{39\sqrt{3}}{4096}
 \]

 \[
 B_{2,-1} = \frac{259}{2048} - \frac{325\sqrt{3}}{4096}
 \]

 \[
 B_{2,0} = \frac{21}{64} - \frac{7\sqrt{3}}{64}
 \]

 \[
 B_{2,1} = \frac{37}{64} - \frac{7\sqrt{3}}{64}
 \]

 \[
 B_{2,2} = \frac{1221}{2048} + \frac{87\sqrt{3}}{4096}
 \]

 \[
 B_{2,3} = \frac{813}{2048} + \frac{1125\sqrt{3}}{4096}
 \]

 \[
 B_{2,4} = \frac{5}{256} + \frac{3\sqrt{3}}{256}
 \]

 \[
 A_{2,-1} = \frac{23}{4096} - \frac{\sqrt{3}}{512}
 \]

 \[
 A_{2,0} = \frac{27}{4096} - \frac{3\sqrt{3}}{256}
 \]

 \[
 A_{2,3} = \frac{15\sqrt{3}}{512} - \frac{295}{4096}
 \]

 \[
 A_{2,4} = \frac{315}{4096} - \frac{35\sqrt{3}}{256}
 \]

 \[
 A_{2,5} = -\frac{1}{256} - \frac{\sqrt{3}}{256}
 \]
FIGURE 5.17.

- **Iteration 4:**

\[
\begin{align*}
B_{1,-2} & = \frac{455}{8192} - \frac{515 \sqrt{3}}{16384} \\
B_{1,-1} & = \frac{2405}{8192} - \frac{2965 \sqrt{3}}{16384} \\
B_{1,0} & = \frac{2769}{8192} - \frac{381 \sqrt{3}}{16384} \\
B_{1,1} & = \frac{2763}{8192} + \frac{3797 \sqrt{3}}{16384} \\
B_{1,2} & = \frac{7}{1024} + \frac{\sqrt{3}}{256}
\end{align*}
\]

\[
\begin{align*}
A_{1,-1} & = \frac{275}{16384} - \frac{15 \sqrt{3}}{2048} \\
A_{1,0} & = \frac{-339}{16384} - \frac{67 \sqrt{3}}{4096} \\
A_{1,1} & = \frac{531}{16384} - \frac{485 \sqrt{3}}{4096} \\
A_{1,2} & = \frac{-1}{512} - \frac{\sqrt{3}}{1024}
\end{align*}
\]

- **Iteration 5:** In this phase we complete the computation of the wavelet-coefficients: these are the \(A_{0,*}\) and the \(B_{0,*} = A_{-1,*}\).

\[
\begin{align*}
B_{0,-2} & = \frac{4495}{32768} - \frac{5115 \sqrt{3}}{65536} \\
B_{0,-1} & = \frac{2099}{16384} - \frac{3025 \sqrt{3}}{32768} \\
B_{0,0} & = \frac{19}{8192} + \frac{11 \sqrt{3}}{8192} \\
B_{0,1} & = \frac{19}{8192} + \frac{11 \sqrt{3}}{8192} \\
B_{0,2} & = \frac{2635}{65536} - \frac{155 \sqrt{3}}{8192} \\
A_{0,-1} & = \frac{2635}{65536} - \frac{155 \sqrt{3}}{8192} \\
A_{0,0} & = \frac{919 \sqrt{3}}{65536} - \frac{5579}{32768} \\
A_{0,1} & = \frac{919 \sqrt{3}}{65536} - \frac{5579}{32768} \\
A_{0,2} & = \frac{5}{8192} - \frac{3 \sqrt{3}}{8192}
\end{align*}
\]
We will examine the convergence of this wavelet-series. The $A_{-1,*}$ terms are:

$$S_{-1} = \left(\frac{4495}{32768} - \frac{5115 \sqrt{3}}{65536} \right) D_4(x + 2) + \left(\frac{2099}{16384} - \frac{3025 \sqrt{3}}{32768} \right) D_4(x + 1)$$

$$+ \left(\frac{19}{8192} + \frac{11 \sqrt{3}}{8192} \right) D_4(x)$$

This expression is analogous to the constant term in a Fourier series.

It is plotted against $f(x)$ in figure 5.17 — compare this (and the following plots with the partial-sums of the Fourier series in figures 5.5 to 5.8 on page 180. If we add in the $A_{0,*}$-terms we get:

$$S_0(x) = S_{-1}(x) + \left(\frac{2635}{65536} - \frac{155 \sqrt{3}}{8192} \right) W_4(x + 1) + \left(\frac{919 \sqrt{3}}{16384} - \frac{5579}{32768} \right) W_4(x)$$

$$- \left(\frac{5}{8192} + \frac{3 \sqrt{3}}{8192} \right) W_4(x - 2)$$

It is plotted against the original function $f(x)$ in figure 5.18. The next step
Figure 5.19.
involves adding in the $A_{1,*}$-terms

$$S_1(x) = S_0(x) + \left(\frac{275}{16384} - \frac{15\sqrt{3}}{2048} \right) W_4(2x + 1) - \left(\frac{339}{16384} + \frac{67\sqrt{3}}{4096} \right) W_4(2x)$$

$$- \left(\frac{531}{16384} - \frac{485\sqrt{3}}{4096} \right) W_4(2x - 2) - \left(\frac{1}{512} + \frac{\sqrt{3}}{1024} \right) W_4(2x - 3)$$

Figure 5.19 shows how the wavelet-series begins to approximate $f(x)$.

The $A_{3,*}$ contribute:

$$S_2(x) = S_1(x) + \left(\frac{23}{4096} - \frac{\sqrt{3}}{512} \right) W_4(4x + 1) - \left(\frac{27}{4096} + \frac{3\sqrt{3}}{256} \right) W_4(4x)$$

$$+ \left(\frac{15\sqrt{3}}{512} - \frac{295}{4096} \right) W_4(4x - 3)$$

$$+ \left(\frac{315}{4096} - \frac{35\sqrt{3}}{256} \right) W_4(4x - 4) - \left(\frac{1}{256} + \frac{\sqrt{3}}{256} \right) W_4(4x - 5)$$
Incidentally, this series (and, in fact, Fourier series) converges in following sense (we will not prove this)

\[\lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) - S_n(x)|^2 \, dx \to 0 \]

This, roughly speaking, means that the area of the space between the graphs of \(f(x) \) and \(S_n(x) \) approaches 0 as \(n \) approaches \(\infty \). This does not necessarily mean that \(S_n(x) \to f(x) \) for all values of \(x \). It is interesting that there are points \(x_0 \) where \(\lim_{n \to \infty} S_n(x_0) \neq f(x_0) \) — \(x = 1 \) is such a point\(^{23}\). Equation (43) implies that the total area of this set of points is zero. Luckily, most of the applications of wavelets only require the kind of convergence described in equation (43).

We will conclude this section with a discussion of the converse of algorithm 4.9 — it is an algorithm that computes partial sums of a wavelet-series, given the coefficients \(\{A_{i,j}\} \). Although there is a straightforward algorithm for doing this that involves simply plugging values into the functions \(w(2^j x - k) \) and plugging these values into the wavelet-series, there is also a faster algorithm for this. This algorithm is very similar to the algorithm for computing the \(\{A_{i,j}\} \) in the first place. We make use of the recursive definition of the scaling and wavelet-functions in equation (38) on page 204.

PROPOSITION 4.10. In the notation of 4.8 on page 210 define the following two sets of matrices:

1. \(L(r)|_{i,j} = \xi_{i-2j} \). Here \(i \) runs from \(L(r) \) to \(U(r) \) and \(j \) runs from \(L(r-1) \) to \(U(r-1) \).

2. \(H(r)|_{i,j} = (-1)^j \xi_{1-i+2j} \). Here \(i \) runs from \(L(r) + 1 \) to \(U(r) \) and \(j \) runs from \(L(r-1) \) to \(U(r-1) \).

Also, let \(\mathbb{R}(u,v) \) denote the \(v-u \)-dimensional subspace of \(\mathbb{R}^\infty \) spanned by coordinates \(u \) through \(v \).

Then

\[
L(r)L(r)^* = \mathbb{I} \text{ on } \mathbb{R}(L(r-1),U(r-1))
\]

\[
H(r)H(r)^* = \mathbb{I} \text{ on } \mathbb{R}(L(r-1) + 1,U(r-1))
\]

and

\[
H(r)L(r)^* = 0
\]

\[
L(r)H(r)^* = 0
\]

PROOF. This follows directly from the orthogonality conditions (Condition O) on the \(\{\xi_i\} \) on page 204. We get

\[
(L(r)L(r)^*)_{i,k} = \sum_j \xi_{j-2i} \xi_{j-2e}/2
\]

\[
= \sum_\ell \xi_{\ell} \xi_{\ell-2(k-i)}/2 \quad \text{(Setting } \ell = j-2i)\]

\[
= \begin{cases}
1 & \text{if } i = k \\
0 & \text{otherwise}
\end{cases} \quad \text{(by equation (42))}
\]

\(^{23}\)This is a well-known phenomena in Fourier series — it is called Gibbs phenomena.
and

\[(H(r)H(r)^*)_{i,k} = \sum_j (-1)^{i+j} \xi_{1-j/2} \xi_{1-j/2}/2\]

\[= \sum_\ell (-1)^{i+j} \xi_{\ell+2(k-i)}/2 \quad \text{(Setting } \ell = 1 - j + 2i)\]

\[= \sum_\ell (-1)^{i-j} \xi_{\ell+2(k-i)}/2 \quad \text{(Setting } \ell = 1 - j + 2i)\]

\[= \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases} \quad \text{(by equation (42))}\]

We also have

\[(H(r)L(r)^*)_{i,k} = \sum_j (-1)^{i+j} \xi_{1-j/2} \xi_{j-2k}/2\]

Setting \(\ell = 1 - j + 2i\)

\[= \sum_\ell (-1)^{i+j} \xi_{\ell+2(i-k)}/2\]

Now we can pair up each term \((-1)^{i+j} \xi_{1-j/2} \xi_{j-2k}/2\) with a term \((-1)^{1-j} \xi_{1-\ell+2(i-k)} \xi_{\ell}/2\), so the total is 0.

The remaining identity follows by a similar argument. □

This implies:

Corollary 4.11. The maps \(L(r)^*L(r)\) and \(H(r)^*H(r)\) satisfy the equations:

\[L(r)^*L(r)L(r)^*L(r) = L(r)^*L(r)\]

\[H(r)^*H(r)H(r)^*H(r) = H(r)^*H(r)\]

\[H(r)^*H(r)L(r)^*L(r) = 0\]

\[L(r)^*L(r)H(r)^*H(r) = 0\]

\[L(r)^*L(r) + H(r)^*H(r) = I\]

The last equation applies to the space \(\mathbb{R}(\mathcal{L}(r) + 1, \mathcal{U}(r))\) (in the notation of 4.10).

Proof. The first four equations follow immediately from the statements of 4.10. The last statement follows from the fact that

\[L(r)(L(r)^*L(r) + H(r)^*H(r)) = L\]

\[H(r)(L(r)^*L(r) + H(r)^*H(r)) = H\]

so that \(L(r)^*L(r) + H(r)^*H(r)\) is the identity on the images of \(L(r)\) and \(H(r)\). The span of \(L(r)\) and \(H(r)\) is the entire space of dimension \([2^{r}(b-a) + R - 1]\) because the rank of \(L(r)\) is \([2^{r-1}(b-a) + R]\) and that of \([2^{r-1}(b-a) + R - 1]\) and the ranks add up to this. □

This leads to the reconstruction-algorithm for wavelets:
Algorithm 4.12. Given the output of algorithm 4.9 on page 211, there exists an algorithm for reconstructing the inputs to that algorithm that $O(n)$ sequential time, and $O(\log n)$ parallel time with a CREW-PRAM computer with $O(n)$ processors.

- Input: The values of the $A_{k,j}$ for $-1 \leq k \leq p$, and, for each value of k, j runs from $L(k)$ to $U(k)$. There are approximately $\lceil 2^{p+1}(b-a) + R \rceil$ such inputs.
- Output: The quantities $\{B_{p+1,j}\}$, where j runs from $\lfloor 2^{p+1}(a) \rfloor$ to $U(p+1)$. There are $n = \lceil 2^{p+1}(b-a) + R \rceil$ such inputs (in the notation of 4.5 on page 209).

The algorithm amounts to a loop:

\[
\text{for } k \leftarrow -1 \text{ to } p \text{ do } \quad \text{Compute } B_{k+1,*} \leftarrow L(k+1)B_{k,*} + H(k+1)A_{k,*} \quad \text{endfor}
\]

Proof. This is a straightforward consequence of 4.10 above, and the main formulas of algorithm 4.9 on page 211. □

4.3. Discussion and Further reading. The defining coefficients for the Daubechies wavelets W_n for $n > 2$ are somewhat complex — see [42] for a general procedure for finding them. For instance, the defining coefficients for W_6 are

\[
\begin{align*}
c_0 &= \frac{\sqrt{5} + 2\sqrt{10}}{16} + 1/16 + \frac{\sqrt{10}}{16} \\
c_1 &= \frac{\sqrt{10}}{16} + \frac{3\sqrt{5} + 2\sqrt{10}}{16} + \frac{5}{16} \\
c_2 &= 5/8 - \frac{\sqrt{10}}{8} + \frac{\sqrt{5} + 2\sqrt{10}}{8} \\
c_3 &= 5/8 - \frac{\sqrt{10}}{8} - \frac{\sqrt{5} + 2\sqrt{10}}{8} \\
c_4 &= \frac{5}{16} - \frac{3\sqrt{5} + 2\sqrt{10}}{16} + \frac{\sqrt{10}}{16} \\
c_5 &= 1/16 - \frac{\sqrt{5} + 2\sqrt{10}}{16} + \frac{\sqrt{10}}{16}
\end{align*}
\]

In [153], Sweldens and Piessens give formulas for approximately computing coefficients of wavelet-expansions:

\[
B_{r,j} = 2^r \int_{-\infty}^{\infty} \phi(2^r x - j)f(x) \, dx
\]

(defined in 4.4 on page 209). For the Daubechies wavelet $W_4(x)$ the simplest case of their algorithm gives:

\[
B_{r,j} \approx f \left(\frac{2j + 3 - \sqrt{3}}{2^{r+1}} \right)
\]

(the accuracy of this formula increases with increasing r). This is more accurate than the estimates we used in the example that appeared in pages 212 to 217 (for
instance, it is exact if \(f(x) = x \). We didn’t go into this approximation in detail because it would have taken us too far afield.

The general continuous wavelet-transform of a function \(f(x) \) with respect to a wavelet \(w(x) \), is given by

\[
T_f(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} \bar{w} \left(\frac{x-b}{a} \right) f(x) \, dx
\]

where \(\bar{w} \) denotes complex conjugation. The two variables in this function correspond to the two indices in the wavelet-series that we have been discussing in this section. This definition was proposed by Morlet, Arens, Fourgeau and Giard in [9]. It turns out that we can recover the function \(f(x) \) from its wavelet-transform via the formula

\[
f(x) = \frac{1}{2\pi C_h} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{T_f(a,b)}{\sqrt{|a|}} \, w \left(\frac{x-b}{a} \right) \, da \, db
\]

where \(C_h \) is a suitable constant (the explicit formula for \(C_h \) is somewhat complicated, and not essential for the present discussion).

The two algorithms 4.9 and 4.12 are, together, a kind of wavelet-analogue to the FFT algorithm. In many respects, the fast wavelet transform and its corresponding reconstruction algorithm are simpler and more straightforward than the FFT algorithm.

Wavelets that are used in image processing are two-dimensional. It is possible to get such wavelets from one-dimensional wavelets via the process of taking the tensor-product. This amounts to making definitions like:

\[
W(x,y) = w(x)w(y)
\]

The concept of wavelets predate their “official” definition in [62].

Discrete Wavelet-transforms of images that are based upon tensor-products of the Haar wavelet were known to researchers in image-processing — such transforms are known as quadtrees representations of images. See [74] for a parallel algorithm for image analysis that makes use of wavelets. In [90], Knowles describes a specialized VLSI design for performing wavelet transforms — this is for performing image-compression “on the fly”. Wavelets were also used in edge-detection in images in [112].

Many authors have defined systems of wavelets that remain nonvanishing over the entire \(x \)-axis. In every case, these wavelets decay to 0 in such a way that conditions like equation 36 on page 203 are still satisfied. The wavelets of Meyer decay like \(1/x^k \) for a suitable exponent \(k \) — see [115].

See [17] for an interesting application of wavelets to astronomy — in this case, the determination of large-scale structure of the universe.

Exercises.

4.3. Write a C* program to compute wavelet-coefficients using algorithm 4.9 on page 211.
4.4. Improve the program above by modifying it to minimize roundoff-error in the computations, taking into account the following two facts:

- We only compute wavelets at dyadic points.
- The coefficients \(\{ \xi_i \} \) used in most wavelet-expansions involve rational numbers, and perhaps, a few irrational numbers with easily-described properties — like \(\sqrt{3} \).

4.5. Find a wavelet-series for the function

\[
f(x) = \begin{cases}
1 & \text{if } 0 \leq x \leq 1/3 \\
0 & \text{otherwise}
\end{cases}
\]

4.6. Suppose that

\[
S_n(x) = \sum_{i=-1}^{n} \sum_{j=-\infty}^{\infty} A_{k,j} \psi(2^k x - j)
\]

is a partial sum of a wavelet-series, as in 4.12 on page 220. Show that this partial sum is equal to

\[
S_n(x) = \sum_{j=-\infty}^{\infty} B_{n,j} \phi(2^n x - j)
\]

so that wavelet-series correspond to series of scaling functions.

5. Numerical Evaluation of Definite Integrals

5.1. The one-dimensional case. In this section we will discuss a fairly straightforward application of parallel computing. See § 1.1.1 on page 401 for related material.

Suppose we have a definite integral

\[
A = \int_{a}^{b} f(x) \, dx
\]

where \(f(x) \) is some function and \(a \) and \(b \) are numbers. It often happens that there is no simple closed-form expression for the indefinite integral

\[
\int f(x) \, dx
\]

and we are forced to resort to numerical methods. Formulas for numerically calculating the approximate value of a definite integral are sometimes called quadrature formulas. The simplest of these is based upon the definition of an integral. Consider the diagram in figure 5.21.

The integral is defined to be the limit of total area of the rectangular strips, as their width approaches 0. Our numerical approximation consists in measuring this area with strips whose width is finite. It is easy to compute the area of this union of rectangular strips: the area of a rectangle is the product of the width and
the height. If the strips are aligned so that the upper right corner of each strip intersects the graph of the function $y = f(x)$, we get the formula:

$$A \approx \sum_{i=0}^{n-1} \frac{b-a}{n} f(a + i(b-a)/n)$$

where n is the number of rectangular strips. The accuracy of the approximation increases as $n \to \infty$.

In general, it is better to align the strips so that top center point intersects the graph $y = f(x)$. This results in the formula:

$$A \approx \sum_{i=0}^{n-1} \frac{1}{n} f(a + i(b-a)/n + 1/2n)$$

We can get a better approximation by using geometric figures that are rectangles that lie entirely below the curve $y = f(x)$ and are capped with triangles — see figure 5.22, where $x_i = a + (b-a)i/n$. This is called the trapezoidal approximation to the definite integral.
That this is better than the original rectangular approximation is visually apparent — there is less space between the curve $y = f(x)$ and the top boundary of the approximating area. We will not give any other proof of its superiority here. The geometric figure that looks like a rectangle capped with a triangle is called a trapezoid, and the area of a trapezoid whose base is r and whose sides are s_1 and s_2 is

$$
\frac{r(s_1 + s_2)}{2}
$$

The area of the trapezoid from $a + i(b - a)/n$ to $a + (i + 1)(b - a)/n$ is, thus:

$$(x_{i+1} - x_i) \left(\frac{1}{2} f(x_i) + \frac{1}{2} f(x_{i+1}) \right)$$

If we add up the areas of all of the trapezoidal strips under the graph from a to b, we get

$$
A \approx \sum_{i=0}^{n-1} \left((a + \frac{i(b - a)}{n}) - (a + \frac{i(b - a)}{n}) \right) \\
\cdot \left(\frac{1}{2} f(a + \frac{i(b - a)}{n}) + \frac{1}{2} f(a + \frac{(i + 1)(b - a)}{n}) \right) \\
= \frac{b - a}{n} \sum_{i=0}^{n-1} \left(\frac{1}{2} f(a + \frac{i(b - a)}{n}) + \frac{1}{2} f(a + \frac{(i + 1)(b - a)}{n}) \right)
$$

(46)

Notice that this formula looks very much like equation (44) on page 223, except for the fact that the values at the endpoints are divided by 2. This equation is called the **Trapezoidal Rule** for computing the definite integral. It is very easy to program on a SIMD computer. Here is a C* program:

```c
/* This is a C* program for Trapezoidal Integration. We assume given
 * a function 'f' that computes the function to be integrated.
 * The number 'n' will be equal to 8192 here. */

#include <stdio.h>
#include <math.h>

#define linear addval; /* The values that are actually added to the integral */
#define linear xval; /* The values of the x-coordinate */
#define linear a,b,intval; /* The end-points of the interval of integration */

int N;

double current f(double current); /* Header for a function to be integrated */

double linear; /* The values that are actually added to the integral */

double linear x; /* The values of the x-coordinate */

double a,b,int; /* The end-points of the interval of integration */

void main()
{
    intval=0;
    
    /* Code here */
```
N=8192;
with(linear)
xval=a+(b-a)*((double)pcoord(0))/((double)N);

with(linear)
where((pcoord(0)==0)|(pcoord(0)==N-1))
{ intval+=f(xval);
 intval/=2.;
}
else
 intval+=f(xval)/((double)N);
/* * 'intval' now contains the approximate value of the
 * int(f(x),x=a..b). */
}

The execution-time of this algorithm is \(O(\lg n)\).

In order to improve accuracy further, we can approximate the function being integrated by polynomials. Given \(k\) points \((x_1, y_1), \ldots, (x_k, y_k)\), we can find a unique degree-\(k\) polynomial that passes through these \(k\) points. Consider the polynomials

\[
p_i(x) = \frac{(x-x_1)(x-x_2) \cdots (x-x_{i-1})(x-x_{i+1}) \cdots (x-x_k)}{(x_i-x_1)(x_i-x_2) \cdots (x_i-x_{i-1})(x_i-x_{i+1}) \cdots (x_i-x_k)}
\]

This is a degree-\(k\) polynomial with the property that:

\[
p_i(x_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}
\]

It is not hard to see that

\[
p(x) = y_1 p_1(x) + \cdots + y_k p_k(x)
\]

will pass through the \(k\) points \((x_1, y_1), \ldots, (x_k, y_k)\). This technique of finding a function that fits a given set of data-points is known as Lagrange’s Interpolation formula. We can develop integration algorithms that are based upon the idea of every sequence of \(k\) successive points \((x_i, f(x_i)), \ldots, (x_{i+k-1}, f(x_{i+k-1}))\) by a polynomial of degree-\(k-1\) and then integrating this polynomial exactly.

In order to simplify this discussion somewhat, we will assume that \(a = 0\) and \(b = k - 1\). This transformation is reasonable because:

\[
\int_{a}^{b} f(x) \, dx = \frac{b-a}{k-1} \int_{0}^{k-1} f\left(a + \frac{(b-a)}{k-1} u\right) \, du = \frac{b-a}{k-1} \int_{0}^{k-1} \tilde{f}(u) \, du
\]

where \(\tilde{f}(u) = f\left(a + \frac{(b-a)}{k-1} u\right)\).

\[(47)\]

\[
\int_{0}^{k-1} \tilde{f}(u) \, du = \tilde{f}(0) \int_{0}^{k-1} Q_{0,k}(u) \, du + \cdots + \tilde{f}(k-1) \int_{0}^{k-1} Q_{k-1,k}(u) \, du
\]

where

\[
Q_{i,k}(x) = \frac{x(x-1) \cdots (x-(i-1))(x-(i+1)) \cdots (x-(k-1))}{i(i-1) \cdots (1)(-1) \cdots (i-(k-1))}
\]
We can compute the values of the integrals
\[A_j = \int_0^{k-1} Q_{j,k}(u) \, du \]
once and for all, and use the same values for integrations that have different values of \(n \).

If we want to integrate from \(a \) to \(b \), we can transform this back to that range to get:
\[\int_a^b f(x) \, dx \approx \frac{b-a}{k-1} \sum_{i=0}^{k-1} f \left(a + \frac{(b-a)i}{n} \right) A_i \]
with the same values of the \(\{ A_j \} \) as before. This is known as the Newton-Cotes Integration algorithm with degree-parameter \(k \) and \(k \) data-points. It is interesting to note that, since Newton-Cotes Algorithm for a given value of \(k \) approximates \(f(x) \) by a polynomial of degree \(k-1 \) and exactly integrates these, it follows that

If \(f(x) \) is a polynomial of degree \(\leq k-1 \), Newton-Cotes Algorithm (with degree-parameter \(k \)) computes the integral of \(f(x) \) exactly.

Now we will consider the case where we use \(n \) data-points, where \(n \) is some multiple of \(k-1 \). We subdivide the range \([a,b]\) into \(t = n/(k-1) \) subranges:
\[[a, a + (b-a)/t], [a + (b-a)/t, a + 2(b-a)/t], \ldots, [a + (t-1)(b-a)/t, b] \ :
\]
\[\int_a^b f(x) \, dx = \int_a^{a+(b-a)/t} f(x) \, dx + \cdots + \int_{a+(t-1)(b-a)/t}^b f(x) \, dx \]

Our integration formula for Newton-Cotes integration with degree-parameter \(k \) and \(n \) data-points is:
\[\int_a^b f(x) \, dx \approx \frac{b-a}{n} \cdot \left\{ \sum_{i=0}^{k-1} f \left(a + \frac{(b-a)i}{n} \right) \cdot A_i \right\} + \sum_{i=k-1}^{2(k-1)} f \left(a + \frac{(b-a)i}{n} \right) \cdot A_{i-(k-1)} + \cdots + \sum_{i=n-(k-1)}^n f \left(a + \frac{(b-a)i}{n} \right) \cdot A_{i-(k-1)} \}
\]

We will conclude this section by discussing several integration algorithms that are based upon this general approach.

Claim 5.1. The Trapezoidal Rule is a special case of Newton-Cotes algorithm with \(k = 2 \).

If \(k = 2 \), we have the two coefficients \(A_0 \) and \(A_1 \) to compute:
\[A_0 = \int_0^1 Q_{0,2}(x) \, dx = \int_0^1 \frac{x-1}{-1} \, dx = \frac{1}{2} \]
and
\[A_1 = \int_0^1 Q_{1,2}(x) \, dx = \int_0^1 \frac{x}{+1} \, dx = \frac{1}{2} \]
and it is not hard to see that equation (49) coincides with that in the Trapezoidal Rule.

If \(k = 3 \) we get an algorithm called Simpson’s Rule:

Here

\[
A_0 = \int_0^2 Q_{0,3}(x) \, dx = \int_0^2 \frac{(x - 1)(x - 2)}{(-1)(-2)} \, dx = \frac{1}{3}
\]

\[
A_1 = \int_0^2 Q_{1,3}(x) \, dx = \int_0^2 \frac{(x)(x - 2)}{(1)(-1)} \, dx = \frac{4}{3}
\]

\[
A_2 = \int_0^2 Q_{2,3}(x) \, dx = \int_0^2 \frac{(x)(x - 1)}{(2)(1)} \, dx = \frac{1}{3}
\]

and our algorithm for the integral is:

ALGORITHM 5.2. Let \(f(x) \) be a function, let \(a < b \) be numbers, and let \(n \) be an even integer > 2. Then Simpson’s Rule for approximately computing the integral of \(f(x) \) over the range \([a, b]\) with \(n \) data-points, is

\[
\int_a^b f(x) \, dx \approx \frac{b - a}{3n} \cdot \left\{ f(a) + f(b) + \sum_{i=1}^{n-1} f\left(a + \frac{(b - a)i}{n}\right) \cdot \begin{cases} 2 & \text{if } i \text{ is even} \\ 4 & \text{if } i \text{ is odd} \end{cases} \right\}
\]

If we let \(k = 4 \) we get another integration algorithm, called Simpson’s 3/8 Rule. Here

\[
A_0 = \frac{3}{8}
\]

\[
A_1 = \frac{9}{8}
\]

\[
A_2 = \frac{9}{8}
\]

\[
A_3 = \frac{3}{8}
\]

and the algorithm is:

ALGORITHM 5.3. Let \(f(x) \) be a function, let \(a < b \) be numbers, and let \(n \) be a multiple of 3. Then Simpson’s 3/8-Rule for approximately computing the integral of \(f(x) \) over the range \([a, b]\) with \(n \) data-points, is

\[
\int_a^b f(x) \, dx \approx \frac{3(b - a)}{8n} \cdot \left\{ f(a) + f(b) + \sum_{i=1}^{n-1} f\left(a + \frac{(b - a)i}{n}\right) \cdot \begin{cases} 2 & \text{if } i \mod 3 = 0 \\ 3 & \text{otherwise} \end{cases} \right\}
\]

The reader can find many other instances of the Newton-Cotes Integration Algorithm in [1].

5.2. Higher-dimensional integrals. The methods of the previous section can easily be extended to multi-dimensional integrals. We will only discuss the simplest form of such an extension — the case where we simply integrate over each
coordinate via a one-dimensional method. Suppose we have two one-dimensional integration formulas of the form

\[
\int_a^b g(x) \, dx \approx \frac{b - a}{n} \sum_{i=0}^{n} B_i g \left(a + \frac{i(b - a)}{n} \right)
\]

\[
\int_c^d g(y) \, dy \approx \frac{d - c}{m} \sum_{j=0}^{m} B'_i g \left(c + \frac{i(d - c)}{m} \right)
\]

where \(n \) is some fixed large number — for instance, in Simpson’s Rule \(B_0 = B_n = 1/3, B_{2k} = 4, B_{2k+1} = 2 \), where \(1 \leq k < n/2 \). Given this integration algorithm, we get the following two dimensional integration algorithm:

ALGORITHM 5.4. Let \(f(x, y) \) be a function of two variables and let \(R \) be a rectangular region with \(a \leq x \leq b, c \leq y \leq d \). Then the following equation gives an approximation to the integral of \(f(x, y) \) over \(R \):

\[
\int\int_R f(x, y) \, dx \, dy \approx \frac{(b - a)(d - c)}{nm} \sum_{i=0}^{n} \sum_{j=0}^{m} B_i B'_j f \left(a + \frac{i(b - a)}{n}, c + \frac{j(d - c)}{m} \right)
\]

Here, we are assuming that the two one dimensional-integrations have different numbers of data-points, \(n \), and \(m \).

Here is a sample C* program for computing the integral

\[
\int\int_R \frac{1}{\sqrt{1 + x^2 + y^2}} \, dx \, dy
\]

where \(R \) is the rectangle with \(1 \leq x \leq 2 \) and \(3 \leq y \leq 4 \). We use Simpson’s 3/8-rule:

```c
#include <stdio.h>
#include <math.h>

int NX=63; /* This is equal to n in the formula for * a two-dimensional integral. */
int NY=126; /* This is equal to m in the formula for * a two-dimensional integral. */
shape [64][128]twodim;
shape [8192]linear;

double:linear B,Bpr;
/* B corresponds to the coefficients B_i */
/* Bpr corresponds to the coefficients B'_i */

double a,b,c,d;
/* This function computes the function to be integrated. */
double:twodim funct(double:twodim x,
double:twodim y)
{
    return (1./sqrt(1.+x*x+y*y));
}
```
double twodim coef, x, y;
double intval;
void main()
{
a=1.;
b=2.;
c=3.;
d=4.;

with (twodim) coef=0.;

/* Compute the coefficients in the boundary cases.
This is necessary because the formula for
Simpson’s 3/8—Rule has special values for the
coefficients in the high and low end of the range */

[0]B=3.*(b-a)/(8.*(double)(NX));
[0]Bpr=3.*(d-c)/(8.*(double)(NY));
[NX-1]B=3.*(b-a)/(8.*(double)(NX));
[NY-1]Bpr=3.*(d-c)/(8.*(double)(NY));

/* Compute the coefficients in the remaining cases. */
with (linear)
where (pcoord(0)>0)
{
where ((pcoord(0) % 3)==0)
{
B=6.*(b-a)/(8.*(double)(NX));
Bpr=6.*(d-c)/(8.*(double)(NY));
}
else
{
B=9.*(b-a)/(8.*(double)(NX));
Bpr=9.*(d-c)/(8.*(double)(NY));
};
with (twodim)
where ((pcoord(0)<NX) && (pcoord(1)<NY))
{

/* Compute the x and y coordinates. */
x=(b-a)*((double)pcoord(0))/((double)NX);
y=(d-c)*((double)pcoord(1))/((double)NY);

/* Evaluate the integral. */
intval+=[pcoord(0)]B*[pcoord(1)]Bpr*funct(x,y);
};
printf("The integral is %g", intval);
5.3. Discussion and Further reading. There are several issues we haven’t addressed. In the one-dimensional case there are the Gaussian-type of integration formulas in which we form a sum like

$$\int_{a}^{b} f(x) \, dx \approx \frac{b-a}{n} \sum_{i=0}^{n} C_i f(x_i)$$

where the \(\{ x_i \} \) are not equally-spaced numbers. These algorithms have the property that, like the Newton-Cotes algorithm, the Gauss algorithm with parameter \(k \) computes the integral exactly when \(f(x) \) is a polynomial of degree \(\leq k - 1 \). They have the additional property that

The Gauss algorithm with degree-parameter \(k \) computes the integral of \(f(x) \) with minimal error, when \(f(x) \) is a polynomial of degree \(\leq 2k - 1 \).

There are several variations of the Gauss integration algorithms:

1. Gauss-Laguerre integration formulas. These compute integrals of the form

$$\int_{0}^{\infty} e^{-x} f(x) \, dx$$

and are optimal for \(f(x) \) a polynomial.

2. Gauss-Hermite integration formulas. They compute integrals of the form

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) \, dx$$

3. Gauss-Chebyshev (Gauss-Chebyshev) integration formulas. These are for integrals of the form Chebyshev

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} \, dx$$

See [43] for more information on these algorithms. The book of tables, [1], has formulas for all of these integration algorithms for many values of the degree-parameter.

4. Wavelet integration formulas. In [153], Sweldens and Piessens give formulas for approximately computing integrals like

$$B_{r,j} = 2^r \int_{-\infty}^{\infty} \phi(2^r x - j) f(x) \, dx$$

which occur in wavelet expansions of functions — see 4.4 on page 209. For the Daubechies wavelet \(W_4(x) \) the simplest form of their algorithm gives:

$$B_{r,j} \approx f \left(\frac{2j + 3 - \sqrt{3}}{2^{r+1}} \right)$$

(the accuracy of this formula increases as \(r \) increases.

In multi-dimensional integration we have only considered the case where the region of integration is rectangular. In many cases it is possible to transform non-rectangular regions of integration into the rectangular case by a suitable change of coordinates. For instance, if we express the coordinates \(x_i \) in terms of another coordinate system \(x'_i \) we can transforms integrals over the \(x_i \) into integrals over the \(x'_i \) via:
\[\int_{D} f(x_1, \ldots, x_t) \, dx_1 \ldots dx_t = \int_{D'} f(x_1, \ldots, x_t) \det(J) \, dx'_1 \ldots dx'_t \]

where \(\det(J) \) is the determinant (defined in 1.8 on page 139) of the \(t \times t \) matrix \(J \) defined by

\[
J_{ij} = \frac{\partial x_i}{\partial x'_j}
\]

For example, if we want to integrate over a disk, \(D \), of radius 5 centered at the origin, we transform to polar coordinates — \(x = r \cos(\theta), y = r \sin(\theta) \), and

\[
J = \begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix} = \begin{pmatrix}
\cos(\theta) & -r \sin(\theta) \\
\sin(\theta) & r \cos(\theta)
\end{pmatrix}
\]

and \(\det(J) = r \left(\sin^2(\theta) + \cos^2(\theta) \right) = r \). We get

\[
\int \int_{D} f(x, y) \, dx \, dy = \int_{0}^{5} \int_{0}^{2\pi} f(r \cos(\theta), r \sin(\theta)) \cdot r \, dr \, d\theta
\]

We can easily integrate this by numerical methods because the new region of integration is rectangular: \(0 \leq r \leq 5, 0 \leq \theta \leq 2\pi \). Volume I of [120] lists 11 coordinate systems that can be used for these types of transformations. High-dimensional numerical integration is often better done using Monte Carlo methods — see §1.1.1 on page 401 for a description of Monte Carlo methods.

EXERCISES.

5.1. Write a C* program that implements Simpson’s 3/8-Rule (using equation (52) on page 227). How many processors can be used effectively? Use this program to compute the integral:

\[
\int_{0}^{4} \frac{1}{\sqrt{1 + |2 - x^3|}} \, dx
\]

5.2. Derive the formula for Newton-Cotes Algorithm in the case that \(k = 5 \).

5.3. Numerically evaluate the integral

\[
\int \int_{D} \sin^2(x) + \sin^2(y) \, dx \, dy
\]

where \(D \) is the disk of radius 2 centered at the origin.

5.4. The following integral is called the \emph{elliptic integral of the first kind}

\[
\int_{0}^{1} \frac{dx}{\sqrt{(1 - x^2)(1 - k^2x^2)}}
\]

Write a C* program to evaluate this integral for \(k = 1/2 \). The correct value is 1.6857503548 . . .
6. Partial Differential Equations

We conclude this chapter with algorithms for solving partial differential equations. We will focus on second-order partial differential equations for several reasons:

1. Most of the very basic partial differential equations that arise in physics are of the second-order;
2. These equations are sufficiently complex that they illustrate many important concepts;

We will consider three broad categories of these equations:

- Elliptic equations.
- Parabolic equations.
- Hyperbolic equations.

Each of these categories has certain distinctive properties that can be used to solve it numerically.

In every case we will replace the partial derivatives in the differential equations by finite differences. Suppose \(f \) is a function of several variables \(x_1, \ldots, x_n \).

Recall the definition of \(\frac{\partial f}{\partial x_i} \):

\[
\frac{\partial f(x_1, \ldots, x_n)}{\partial x_i} = \lim_{\delta \to 0} \frac{f(x_1, \ldots, x_i + \delta, \ldots, x_n) - f(x_1, \ldots, x_n)}{\delta}
\]

The simplest finite-difference approximation to a partial derivative involves picking a small nonzero value of \(\delta \) and replacing all of the partial derivatives in the equations by finite differences. We can solve the finite-difference equations on a computer and hope that the error in replacing differential equations by difference equations is not too great.

We initially get

\[
\frac{\partial^2 f(x_1, \ldots, x_n)}{\partial x_i^2}
\]

In general we will want to use the formula

\[
\frac{\partial^2 f(x_1, \ldots, x_n)}{\partial x_i^2} \approx \frac{f(x_1, \ldots, x_i + \delta, \ldots, x_n) - 2f(x_1, \ldots, x_n) + f(x_1, \ldots, x_i - \delta, \ldots, x_n)}{\delta^2}
\]

—this is also an approximate formula for the second-partial derivative in the sense that it approaches \(\frac{\partial^2 f(x_1, \ldots, x_n)}{\partial x_i^2} \) as \(\delta \to 0 \). We prefer it because it is symmetric about \(x \).

All of the differential equations we will study have an expression of the form

\[
\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x_1^2} + \frac{\partial^2 \psi}{\partial x_2^2} + \cdots + \frac{\partial^2 \psi}{\partial x_n^2}
\]

in the \(n \)-dimensional case. We will express this in terms of finite differences. Plugging the finite-difference expression for \(\frac{\partial^2 f(x_1, \ldots, x_n)}{\partial x_i^2} \) into this gives:

\[
\nabla^2 \psi = \frac{(\psi(x_1, \ldots, x_n) + \psi(x_1, \ldots, x_i + \delta, \ldots, x_n) + \cdots + \psi(x_1, \ldots, x_n + \delta)) - 2n\psi(x_1, \ldots, x_n)}{\delta^2}
\]
This has an interesting interpretation: notice that

\[
\psi_{\text{average}} = \frac{\psi(x_1 + \delta, x_2, \ldots, x_n) + \psi(x_1 - \delta, x_2, \ldots, x_n) + \cdots}{2n}
\]

can be regarded as the average of the function-values \(\psi(x_1 + \delta, x_2, \ldots, x_n), \psi(x_1 - \delta, x_2, \ldots, x_n), \ldots\) Consequently, \(\nabla^2 \psi / 2n\) can be regarded as the difference between the value of \(\psi\) at a point and the average of the values of \(\psi\) at neighboring points.

6.1. Elliptic Differential Equations.

6.1.1. Basic concepts.

Elliptic partial differential equations are equations of the form

\[
A_1 \frac{\partial^2 \psi}{\partial x_1^2} + \cdots + A_n \frac{\partial^2 \psi}{\partial x_n^2} + B_1 \frac{\partial \psi}{\partial x_1} + \cdots + B_n \frac{\partial \psi}{\partial x_n} + C \psi = 0
\]

where \(A_1, \ldots, A_n, B_1, \ldots, B_n,\) and \(C\) are functions of the \(x_1, \ldots, x_n\) that all satisfy the conditions \(A_i \geq m, B_i \geq M\) for some positive constants \(m\) and \(M\), and \(C \leq 0\). It turns out that, when we attempt the numerical solution of these equations, it will be advantageous for them to be in their so-called self-adjoint form. The general self-adjoint elliptic partial differential equation is

\[
\frac{\partial}{\partial x_1} \left(A_1' \frac{\partial \psi}{\partial x_1} \right) + \cdots + \frac{\partial}{\partial x_n} \left(A_n' \frac{\partial \psi}{\partial x_n} \right) + C' \psi = 0
\]

where \(A_1', \ldots, A_n',\) and \(C'\) are functions of the \(x_1, \ldots, x_n\) that all satisfy the conditions \(A_i' \geq M\), for some positive constant \(M\) and \(C' \leq 0\). The numerical methods presented here are guaranteed to converge if the equation is self-adjoint. See § 6.1.2 on page 242 for a more detailed discussion of this issue.

Here is an elliptic differential equation called the Poisson Equation — it is fairly typical of such equations:

\[
\nabla^2 \psi(x_1, \ldots, x_n) = \sigma(x_1, \ldots, x_n)
\]

where \(\psi(x_1, \ldots, x_n)\) is the unknown function for which we are solving the equation, and \(\sigma(x_1, \ldots, x_n)\) is some given function. This equation is clearly self-adjoint.

We will focus upon one elliptic partial differential equation that occurs in physics — it is also the simplest such equation that is possible. The following partial differential equation is called Laplace’s equation for gravitational potential in empty space\(^{24}\):

\[
\nabla^2 \psi(x_1, \ldots, x_n) = 0
\]

\(^{24}\)It can also be used for electrostatic potential of a stationary electric field.
In this case $\psi(x, y, z)$ is gravitational potential. This is a quantity that can be used to compute the force of gravity by taking its single partial derivatives:

\begin{align}
F_x &= -Gm \frac{\partial \psi}{\partial x} \\
F_y &= -Gm \frac{\partial \psi}{\partial y} \\
F_z &= -Gm \frac{\partial \psi}{\partial z}
\end{align}

where G is Newton’s Gravitational Constant ($= 6.673 \times 10^{-8} \text{cm}^3/\text{g sec}^2$) and m is the mass of the object being acted upon by the gravitational field.

Partial differential equations have an infinite number of solutions — we must select a solution that is relevant to the problem at hand by imposing boundary conditions. We assume that our unknown function ψ satisfies the partial differential equation in some domain, and we specify the values it must take on at the boundary of that domain. Boundary conditions may take many forms:

1. If the domain of solution of the problem is finite (for our purposes, this means it is contained within some large but finite cube of the appropriate dimension), the boundary conditions might state that $\psi(\text{boundary})$ takes on specified values.
2. If the domain is infinite, we might require that $\psi(x, y, z) \to 0$ as $x^2 + y^2 + z^2 \to \infty$.

Here is an example:

Example 6.1. Suppose that we have a infinitely flexible and elastic rubber sheet stretched over a rectangle in the x-y plane, where the rectangle is given by

$$
0 \leq x \leq 10 \\
0 \leq y \leq 10
$$

Also suppose that we push the rubber sheet up to a height of 5 units over the point $(1, 2)$ and push it down 3 units over the point $(7, 8)$. It turns out that the height of the rubber sheet over any point (x, y) is a function $\psi(x, y)$ that satisfies Laplace’s equation, except at the boundary points. We could compute this height-function by solving for ψ where:

- ψ satisfies the two-dimensional form of Laplace’s equation

$$
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0
$$

for

$$
0 < x < 10 \\
0 < y < 10 \\
(x, y) \neq (1, 2) \\
(x, y) \neq (7, 8)
$$

- (Boundary conditions). $\psi(0, y) = \psi(x, 0) = \psi(10, y) = \psi(x, 10) = 0$, and $\psi(1, 2) = 5, \psi(7, 8) = -3$.

There is an extensive theory of how to solve partial differential equations *analytically* when the domain has a geometrically simple shape (like a square or circle, for instance). This theory essentially breaks down for the example above because the domain is very irregular — it is a square *minus two points*.

If we plug the numeric approximation to $\nabla^2 \psi$ into this we get:

\[
\begin{align*}
\frac{\psi(x+\delta,y,z)+\psi(x-\delta,y,z)+\psi(x,y+\delta,z)+\psi(x,y-\delta,z)}{\delta^2} &+\psi(x,y,z+\delta)+\psi(x,y,z-\delta) - 6\psi(x,y,z) = 0
\end{align*}
\]

We can easily rewrite this as:

\[
\begin{align*}
\psi(x,y,z) = \frac{\left(\psi(x+\delta,y,z)+\psi(x-\delta,y,z)+\psi(x,y+\delta,z)+\psi(x,y-\delta,z)+\psi(x,y,z+\delta)+\psi(x,y,z-\delta)\right)}{6}
\end{align*}
\]

This essentially states that the value of ψ at any point is equal to the average of its values at certain neighboring points.\(^{25}\) This implies that a solution to this equation cannot have a maximum or minimum in the region where the equation is satisfied (we usually assume that it *isn’t* satisfied on the boundary of the region being considered, or at some selected points of that region). In any case we will use this form of the numerical equation to derive an algorithm for solving it. The algorithm amounts to:

1. Overlay the region in question with a rectangular grid whose *mesh size* is equal to the number δ. This also requires “digitizing” the boundary of the original region to accommodate the grid. We will try to compute the values of the function ψ at the grid points.

2. Set ψ to zero on all grid points in the *interior* of the region in question, and to the assigned boundary values on the grid points at the boundary (and, possibly at some interior points). See figure 5.23.

Here the “digitized” boundary points have been marked with small circles.

3. Solve the resulting finite-difference equations for the values of ψ on the grid-points.

\(^{25}\) This also gives a vague intuitive justification for the term “elliptic equation” — the value of ψ at any point is determined by its values on an “infinitesimal sphere” (or ellipsoid) around it.
This procedure works because:

The finite-difference equation is nothing but a system of linear equations for $\psi(x,y,z)$ (for values of x, y, and z that are integral multiples of δ). This system is very large — if our original grid was $n \times m$, we now have $nm - b$ equations in $nm - b$ unknowns, where b is the number of boundary points (they are not unknowns). For instance, if our digitized region is a 4×5 rectangular region, with a total of 14 boundary points, we number the 6 interior points in an arbitrary way, as depicted in figure 5.24.

This results in the system of linear equations:

$$
\begin{pmatrix}
1 & -1/4 & 0 & -1/4 & 0 & 0 \\
-1/4 & 1 & 0 & 0 & -1/4 & 0 \\
0 & -1/4 & 1 & 0 & 0 & -1/4 \\
-1/4 & 0 & 0 & 1 & -1/4 & 0 \\
0 & -1/4 & 0 & -1/4 & 1 & -1/4 \\
0 & 0 & -1/4 & 0 & -1/4 & 1
\end{pmatrix}
\begin{pmatrix}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\psi_4 \\
\psi_5 \\
\psi_6
\end{pmatrix}
=
\begin{pmatrix}
c_2/4 + c_{14}/4 \\
c_3/4 \\
c_4/4 + c_6/4 \\
c_{11}/4 + c_{13}/4 \\
c_{10}/4 \\
c_7/4 + c_9/4
\end{pmatrix}
$$

Here the c's are the values of ψ on the boundary of the region. This example was a small “toy” problem. In a real problem we must make δ small enough that the finite differences are a reasonable approximation to the original differential equation. This makes the resulting linear equations very large. For instance in example 6.1 on page 234 above, if we make $\delta = .1$, we will almost get 10000 equations in 10000 unknowns. It is not practical to solve such equations by the usual numerical methods (like Gaussian elimination, for instance). We must generally use iterative methods like those discussed in § 1.2.3 (on page 151). We will consider how to set up the Jacobi method to solve the numerical form of Laplace’s equation.

Suppose we have a finite-difference form of Laplace’s equation defined on a grid, as described above. The function ψ is now a vector over all of the grid-points — for instance in example 6.1 on page 234 with $\delta = .1$, ψ has 10000 components. Let A_{average} be the matrix such that

$$A_{\text{average}} \cdot \psi(\text{at a grid-point})$$

is equal to the average of the values of ψ at the four adjacent grid-points. We will not have to write down what this huge array is explicitly (equation (66) on page 236 gives it in a simple case). We only need to know that each row of A_{average} has
at most 4 non-zero entries, each equal to 1/4. Laplace’s equation says that
\[\nabla^2 \psi \approx \frac{4}{\delta^2} (A_{\text{average}} \cdot \psi - \psi) = 0 \]
or
\[A_{\text{average}} \cdot \psi - \psi = 0 \]
or
\[I \cdot \psi - A_{\text{average}} \cdot \psi = 0 \]
(where \(I \) is the identity matrix) or
\[A \cdot \psi = 0 \]
where \(A = I - A_{\text{average}} \). Now we apply the Jacobi method, described in §1.2.3 on page 151. The array of diagonal elements, \(D(A) = I \), so \(D(A)^{-1} = I \), \(Z(A) = I - D(A)^{-1}A = A_{\text{average}} \) and the Jacobi iteration scheme amounts to
\[\psi^{(n+1)} = A_{\text{average}} \cdot \psi^{(n)} \]

Our numerical algorithm is, therefore,

\begin{algorithm}
\textbf{Algorithm} 6.2. The \(n \)-dimensional Laplace equation can be solved by performing the steps: Digitize the region of solution, as in figure 5.24 on page 236 (using an \(n \)-dimensional lattice).
\(\psi \leftarrow 0 \) at all grid-points
\(\) (of the digitized region of solution),
\(\) except at boundary points for which \(\psi \)
\(\) must take on other values
\(\) (for instance points like (1, 2) and (7, 8)
\(\) in example 6.1 on page 234.)
\(\)
\(\textbf{for } i \leftarrow 1 \textbf{ until } \psi \text{ doesn’t change appreciably} \)
\(\textbf{do in parallel} \)
\(\textbf{if grid-point } p \text{ is \textbf{not} a boundary point} \)
\(\psi(p) \leftarrow \text{average of values of } \psi \text{ at } 2n \text{ adjacent grid-points}. \)

Our criterion for halting the iteration is somewhat vague. We will come back to this later. Essentially, we can just test whether \(\psi \) has changed over a given iteration and halt the iteration when the total change in \(\psi \) is sufficiently small. The program on page 238 totals up the absolute value of the change in \(\psi \) in each iteration and halts when this total is \(\leq 2 \).

It is possible to prove that when the original partial differential equation was self-adjoint, or if the quantity \(\delta \) is sufficiently small, this iteration-procedure converges\(^{26}\) to a solution of finite-difference equations — and an approximate solution to the original partial differential equation (at least at the grid-points). This is known as a relaxation method for solving the set of finite-difference equations. The difference-equations that arise as a result of the procedure above turn out to have matrices that are dominated by their main diagonal (a necessary condition for the Jacobi method to converge). The molecule-structure depicted above turns out to be

\(^{26}\)The question of such convergence was discussed in 1.33 on page 151. In §6.1.3 on page 244 we explore the rate of convergence of this iteration-scheme. The self-adjointness of the original partial differential equation implies that the criteria in that result are satisfied.
very significant in finding consistent-ordering schemes for speeding up the Jacobi iteration technique for solving these finite-difference equations.

The term “relaxation method” came from a vaguely similar problem of computing the shape of a membrane hanging from its boundary under its own weight. The solution was found by first assuming a upward force that opposes gravity and makes the membrane flat. This restoring force is then “relaxed”, one grid-point at a time until the membrane hangs freely.

In many cases the convergence of this procedure is fairly slow — it depends upon the spectral radius of the matrix of the system, when it is written in a form like equation (66) — see 1.34 on page 152.

We will present a C* program for implementing the relaxation algorithm in the two-dimensional case. The region under consideration consists of the rectangle $-2 \leq x \leq +2, -4 \leq y \leq +4$. We assign one processor to each grid-point. The size of the mesh, δ, will be $1/16$ — this is dictated by the number of processors available to perform the computation. The smaller δ is the more accurate the solution. Each processor has float-variables x and y containing the coordinates of its grid point, float-variables ψ, oldpsi and diff containing, respectively, the value of ψ in the current iteration, the value in the last iteration, and the difference between them. There is also an int-variable isfixed that determines whether the iteration is to be performed on a given grid-point. In general, we will not perform the calculations on the boundary grid-points — at these points the value of ψ is assigned and fixed.

When the program is run, it performs the computation that replaces ψ by ψ_{average} and computes the difference. This difference is totaled into the (mono) variable totaldiff and the computation is stopped when this total difference is less than some pre-determined amount (2 in this case): num-chpr1

We will want to speed up this iteration-scheme. We can do so by using the SOR or consistently-ordered methods described in § 1.2.5 on page 157. Our iteration formula is now:

$$\psi^{(n+1)} = (1 - \mu) \cdot \psi^{(n)} + \mu \cdot A_{\text{average}} \cdot \psi^{(n)}$$

where μ is a suitable over-relaxation coefficient. We will delay considering the question of what value we should use for μ for the time being. Recall that the SOR method per se is a sequential algorithm. We must find a consistent-ordering scheme in order to parallelize it.

At each grid-point the two-dimensional form of equation (65) relates each grid-point with its four neighbors. We express this fact by saying the molecule of the finite-difference equations is what is depicted in figure 5.25:

![Molecule diagram](image-url)
The interpretation of consistent-ordering schemes in terms of graph-coloring in 1.44 on page 161 is very significant here. Our main result is:

Proposition 6.3. Given finite-difference equations representing elliptic differential equations, with the molecule shown in figure 5.25, there exists a consistent-ordering with only two sets.

These two sets turn out to be
1. \(S_1 \) = grid-points for which the sum of indices is even; and
2. \(S_2 \) = grid-points for which the sum of indices is odd.

Proof. Suppose that our digitized region of solution is an \(n \times m \) grid, as discussed above, and we have \(b \) boundary points (at which the values of \(\psi \) are known. The fact that the molecule of the finite-difference equations is what is depicted in 5.25 implies that however we map the digitized grid into linear equations, two indices (i.e., rows of the matrix of the linear equations) will be associated in the sense of statement 1 of 1.40 on page 158, if and only if they are neighbors in the original grid. We want to find a consistent ordering vector in the sense of statement 3 of that definition. Recall that such an ordering vector \(\gamma \) must satisfy:

1. \(\gamma_i - \gamma_j = 1 \) if \(i \) and \(j \) are associated and \(i > j \);
2. \(\gamma_i - \gamma_j = -1 \) if \(i \) and \(j \) are associated and \(i < j \);

Let us map the grid-points of our digitized region into the array in the following way.

- Map all grid-points with the property that the sum of the coordinates is even into the lower half of the dimensions of the array.
- Map all grid-points with the property that the sum of the coordinates is odd into the upper half of the dimensions of the array.

Figure 5.26 shows this in the case where \(n = 5 \) and \(m = 7 \).

The numbers in circles are the row-number of the that grid-point in the matrix that represent the difference equations. If we go back to our original grid, we see...
that each grid point is *only associated* (in the sense of statement 1 of 1.40 on page 158) with its *four neighbors*. This implies that the following is a valid consistent-ordering vector for our problem:

\[
\gamma_i = \begin{cases}
1 & \text{if the sum of grid-coordinates is even} \\
2 & \text{if the sum of grid-coordinates is odd}
\end{cases}
\]

\[\blacksquare\]

We can now apply 1.41 on page 159 to solve this as a consistently-ordered system of linear equations. We essentially perform the update-computations on the processors whose coordinates have the property that their sum is *even* (these turn out to be the elements for which the order-vector is equal to 1) and then (in a separate phase) on the processors such that the sum of the coordinates is *odd* — these represent the elements of the array with an ordering vector that is equal to 2.

There is an extensive theory on how one determines the best value of \(\mu\) to use. The Ostrowski-Reich Theorem and the theorem of Kahan states that this overrelaxation parameter must satisfy the inequality \(0 < \mu < 2\), in order for this SOR-algorithm to converge — see 1.39 on page 158. For the Laplace Equation over a region \(\Omega\) with the kind of boundary conditions we have discussed (in which values of \(\psi\) are specified on the boundary), Garabedian (see [56]) has given a formula that estimates the optimal value to use for \(\mu\):

\[
\mu \approx \frac{2}{1 + \pi\delta / \sqrt{A(\Omega)}}
\]

where \(A(\Omega)\) is the area of the region \(\Omega\). Compare this formula of Garabedian with the formula in 1.42 on page 160. Compare this to equation (79) on page 250 — in that section we derive estimates of the rate of convergence of the Jacobi method. The second statement of 1.42 implies that the spectral radius of the effective matrix used in the SOR method is \(\mu - 1\) or

\[
\rho(L_\mu) = \frac{\sqrt{A(\Omega)} - \pi\delta}{\sqrt{A(\Omega)} + \pi\delta}
\]

The rate of convergence is

\[
-\ln(\rho(L_\mu)) = \frac{2\pi\delta}{\sqrt{A(\Omega)}} + O(\delta^3)
\]

This implies that the execution time of the algorithm (in order to achieve a given degree of accuracy) is \(O(1/\delta)\).

In the case of the problem considered in the sample program above, we get \(\mu = 1.932908695\ldots\)

\[\text{num-chpr2}\]

This program simply prints out some of the data-points produced by the program. One can use various graphics-packages to generate better displays. Figure 5.27 shows the result of using *matlab* to produce a 3 dimensional graph in the case where \(\psi\) was constrained on the boundary to 0 and set to a positive and negative value at some interior points.

\[\text{27 See statement 3 on page 159 of 1.40 for a definition of this term.}\]
The following routine was used to generate the data in a form for processing by \texttt{matlab}:
\begin{verbatim}
 num-chpr3
\end{verbatim}
Here, the file \texttt{outf} must be declared in the file containing the main program that calls \texttt{graphout}.

The most efficient implementations of this algorithm involve so-called \textit{multigrid methods}. These techniques exploit the fact that the algorithm converges quickly if the mesh-size is large, but is more accurate (in the sense of giving a solution to the original differential equation) if the mesh-size is small. In multigrid methods, the solution-process is begun with a large mesh-size, and the result is plugged into\footnote{I.e., used as the initial approximation to a solution.} a procedure with a smaller mesh-size. For instance, we could halve the mesh-size in each phase of a multigrid program. Each change of the mesh-size will generally necessitate a recomputation of the optimal overrelaxation coefficient — see equation (67) on page 240.

As has been mentioned before, even an \textit{exact} solution to the difference equations will not generally be an exact solution to the \textit{differential} equations. To get some idea of how accurate our approximation is, the previous program has boundary conditions for which the \textit{exact solution} is known: $\psi(x,y) = x + y$. Other \textit{exact} solutions of the Laplace equation are: $\psi(x,y) = xy$, $\psi(x,y) = x^2 - y^2$, and $\psi(x,y) = \log((x-a)^2 + (y-b)^2)$, where a and b are arbitrary constants. One important way to get solutions to Laplace’s equation is to use the fact (from the theory of complex analysis) that the \textit{real} and the \textit{imaginary} parts of any analytic complex-valued function satisfy the two dimensional Laplace equation. In other words if $f(z)$ is a complex analytic function (like e^z or z^3, for instance) and we write $f(x + iy) = u(x,y) + iv(x,y)$, then $u(x,y)$ and $v(x,y)$ each satisfy Laplace’s equation.

If the accuracy of these solutions is not sufficient there are several possible steps to take:

1. Use a smaller mesh size. In the sample programs given we would have to increase the number of \textit{processors} — the Connection Machine is currently limited to 64000 processors. It is also possible to use \textit{virtual} processors,
in which physical processors each emulate several processors. This latter step slows down the execution time.

2. Use a better finite-difference approximation of the partial derivatives.

6.1.2. Self-adjoint equations. Now we will consider how to convert many different elliptic differential equations into self-adjoint equations. Our solution-techniques in this case will be minor variations on the methods described in the previous section.

Throughout this section, we will assume given an elliptic partial differential equations:

\[A_1 \frac{\partial^2 \psi}{\partial x_1^2} + \cdots + A_n \frac{\partial^2 \psi}{\partial x_n^2} + B_1 \frac{\partial \psi}{\partial x_1} + \cdots + B_n \frac{\partial \psi}{\partial x_n} + C \psi = 0 \]

where \(A_1, \ldots, A_n, B_1, \ldots, B_n, \) and \(C \) are functions of the \(x_1, \ldots, x_n \) that all satisfy the conditions \(A_i \geq m, B_i \geq M, \) for some positive constant \(M \) and \(C \leq 0. \) Our integrating factor is a function \(\Phi(x_1, \ldots, x_n), \) and we will write \(\psi(x_1, \ldots, x_n) = \Phi(x_1, \ldots, x_n) \cdot u(x_1, \ldots, x_n). \)

This equation is self-adjoint if

\[\frac{\partial A_i}{\partial x_i} = B_i \]

for all \(i = 1, \ldots, n. \) If these conditions are not satisfied, we can sometimes transform the original equation into a self-adjoint one by multiplying the entire equation by a function \(\Phi(x_1, \ldots, x_n), \) called an integrating factor. Elliptic differential equations that can be transformed in this way are called essentially self adjoint. If we multiply (57) by \(\Phi, \) we get:

\[A_1 \Phi \frac{\partial^2 \psi}{\partial x_1^2} + \cdots + A_n \Phi \frac{\partial^2 \psi}{\partial x_n^2} + B_1 \Phi \frac{\partial \psi}{\partial x_1} + \cdots + B_n \Phi \frac{\partial \psi}{\partial x_n} + C \Phi \psi = 0 \]

and this equation is self-adjoint if

\[\frac{\partial \Phi A_i}{\partial x_i} = \Phi B_i \]

It is straightforward to compute \(\Phi \) — just set:

\[\frac{\partial \Phi A_i}{\partial x_i} = \Phi B_i \]

\[\frac{\partial \Phi A_i}{\partial x_i} + \Phi \frac{\partial A_i}{\partial x_i} = \Phi B_i \]

\[\frac{\partial \Phi A_i}{\partial x_i} = \Phi \left\{ B_i - \frac{\partial A_i}{\partial x_i} \right\} \]

and temporarily “forget” that it is a partial differential equation. We get

\[\frac{\partial \Phi}{\Phi} = \partial x_i \frac{B_i - \frac{\partial A_i}{\partial x_i}}{A_i} \]
Now integrate both sides to get
\[
\log \Phi = \int \frac{B_i - \partial A_i}{A_i} \, dx_i + C(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
\]

Note that our “arbitrary constant” must be a function of the other variables, since our original equation was a partial differential equation. We get an equation for \(\Phi \) that has an unknown part, \(C(x_2, \ldots, x_n) \), and we plug this into equation (71) for \(i = 2 \) and solve for \(C(x_2, \ldots, x_n) \). We continue this procedure until we have completely determined \(\Phi \).

A function, \(\Phi \), with these properties exists if and only if the following conditions are satisfied:

\[
\frac{\partial}{\partial x_i} \left(\frac{B_j - \partial A_j}{A_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{B_i - \partial A_i}{A_i} \right)
\]

for all pairs of distinct indices \(i, j = 1, \ldots, n \). If this condition is satisfied, the original partial differential equation is called essentially self adjoint, and can be re-written in the self-adjoint form

\[
\frac{\partial}{\partial x_1} \left(A_1 \Phi \frac{\partial \psi}{\partial x_1} \right) + \cdots + \frac{\partial}{\partial x_n} \left(A_n \Phi \frac{\partial \psi}{\partial x_n} \right) + C \Phi \psi = 0
\]

Our method for solving this equation is essentially the same as that used for the Laplace equation except that we use the approximations in equation (54) on page 232 for the partial derivatives. The self-adjointness of the original differential equation guarantees that the numerical approximations can be solved by iterative means.

Exercises.

6.1. Run the program with boundary conditions \(\psi(x, y) = x^2 - y^2 \) and determine how accurate the entire algorithm is in this case. (This function is an exact solution to Laplace’s Equation).

6.2. Determine, by experiment, the best value of \(\mu \) to use. (Since the formula given above just estimates the best value of \(\mu \)).

6.3. Is the algorithm described in the program on page 240 EREW (see page 18)? Is it calibrated (see page 54)?

6.4. Is the partial differential equation
\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{2}{x} \frac{\partial \psi}{\partial x} + \frac{\partial^2 \psi}{\partial y^2} = 0
\]

self-adjoint? If not, how can it be put into a self-adjoint form?

29This is also a condition for our technique for computing \(\Phi \) to be well-defined.
6.5. Determine whether the following equation is essentially self-adjoint:

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{2}{x + y} \frac{\partial \psi}{\partial x} + \frac{\partial^2 \psi}{\partial y^2} + \frac{2}{x + y} \frac{\partial \psi}{\partial y} = 0
\]

If it is, convert it into a self-adjoint form.

6.6. It is possible to approximate the Laplacian operator (equation (55) on page 232) by using the following approximation for a second partial derivative:

\[
\frac{\partial^2 f(x)}{\partial x^2} \approx \frac{35 f(x - 2\delta) - 104 f(x - \delta) + 114 f(x) - 56 f(x + \delta) + 11 f(x + 2\delta)}{12\delta^2}
\]

If \(f(x) \) is a smooth function, this is more accurate than the approximation used in equation (54) on page 232 — for instance, this equation is exact if \(f(x) \) is a polynomial whose degree is \(\leq 4 \).

1. What is the molecule of this approximation for the Laplacian?

6.7. Let \(\Omega \) denote the region \(1 \leq x \leq 3, 1 \leq y \leq 5 \). Give finite-difference formulations for the following equations:

1. \[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -2
\]

2. \[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = xy \psi
\]

6.1.3. Rate of convergence. In this section we will determine how fast the iterative methods in the preceding sections converge in some cases. We will do this by computing the spectral radius (and 2-norm) of the matrices involved in the iterative computations. We will restrict our attention to the simplest case; the two-dimensional form of Laplace’s equation for which the domain of the problem is a rectangle. This computation will make extensive use of the material in § 2.4 on page 197, and in particular the computation of the eigenvalues of the matrices \(\mathcal{E}(n) \) defined there.

We will begin by defining matrices \(\mathcal{E}(n) \) by

Definition 6.4. Let \(n > 0 \) be an integer and define the \(n \times n \) matrix \(\mathcal{E}(n) \) by

\[
\mathcal{E}(n) = \begin{cases}
1 & \text{if } |i - j| = 1 \\
0 & \text{otherwise}
\end{cases}
\]
For instance $E(5)$ is the matrix
\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]
Note that $E(n)$ looks very similar to $Z(n)$ defined in 2.10 on page 198 — they only differ in the extra 1’s that $Z(n)$ has in the upper right and lower left corners. The matrices $E(n)$ turn out to be closely related to the matrices that appear in the Jacobi iteration scheme for solving the finite-difference approximations of elliptic differential equations. We will calculate their eigenvalues and eigenvectors. It is tempting to try use our knowledge of the eigenvalues and eigenvectors of the matrices $Z(n)$ to perform these computations. This is indeed possible, as is clear by recalling that $Z(n)$ has a set of eigenvectors:
\[
w'(j) = \{0, \sin(2\pi j/n), \sin(4\pi j/n), \ldots, \sin(2\pi j(n-1)/n)\}
\]
(see equation (34) on page 199). The corresponding eigenvalue is $2 \cos(2\pi jk/n)$ and the equation these satisfy is
\[
Z(n) \cdot w'(j) = 2 \cos(2\pi jk/n)w'(j)
\]
The significant aspect of this equation is that the first component of $w'(j)$ is zero — this implies that the first row and column of that matrix effectively does not exist:
\[
(74) \quad Z(n+1) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 1 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}
= 2 \cos 2\pi k/(n+1) \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}
\]
so
\[
E(n) \cdot \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}
\]
and $\{2 \cos 2\pi k/(n+1)\}$ are eigenvalues of $E(n)$. Unfortunately, we don’t know that we have found all of the eigenvalues — there are at most n such eigenvalues and we have found $\lceil n/2 \rceil$ of them. In fact, it turns out that we can find additional eigenvalues and eigenvectors. To see this, consider the eigenvalue equation like
\[\text{(34) on page 199). The corresponding eigenvalue is } 2 \cos(2\pi jk/n) \text{ and the equation these satisfy is } Z(n) \cdot w'(j) = 2 \cos(2\pi jk/n)w'(j). \]
\[\text{The significant aspect of this equation is that the first component of } w'(j) \text{ is zero — this implies that the first row and column of that matrix effectively does not exist:} \]
\[\text{(74) } Z(n+1) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 1 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}. \]
\[\text{So } E(n) \cdot \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} \text{ and } \{2 \cos 2\pi k/(n+1)\} \text{ are eigenvalues of } E(n). \]
\[\text{Unfortunately, we don’t know that we have found all of the eigenvalues — there are at most } n \text{ such eigenvalues and we have found } \lceil n/2 \rceil \text{ of them. In fact, it turns out that we can find additional eigenvalues and eigenvectors. To see this, consider the eigenvalue equation like} \]
\[\text{(34) on page 199). The corresponding eigenvalue is } 2 \cos(2\pi jk/n) \text{ and the equation these satisfy is } Z(n) \cdot w'(j) = 2 \cos(2\pi jk/n)w'(j). \]
\[\text{The significant aspect of this equation is that the first component of } w'(j) \text{ is zero — this implies that the first row and column of that matrix effectively does not exist:} \]
\[\text{(74) } Z(n+1) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 1 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}. \]
\[\text{So } E(n) \cdot \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} \text{ and } \{2 \cos 2\pi k/(n+1)\} \text{ are eigenvalues of } E(n). \]
\[\text{Unfortunately, we don’t know that we have found all of the eigenvalues — there are at most } n \text{ such eigenvalues and we have found } \lceil n/2 \rceil \text{ of them. In fact, it turns out that we can find additional eigenvalues and eigenvectors. To see this, consider the eigenvalue equation like} \]
\[\text{(34) on page 199). The corresponding eigenvalue is } 2 \cos(2\pi jk/n) \text{ and the equation these satisfy is } Z(n) \cdot w'(j) = 2 \cos(2\pi jk/n)w'(j). \]
\[\text{The significant aspect of this equation is that the first component of } w'(j) \text{ is zero — this implies that the first row and column of that matrix effectively does not exist:} \]
\[\text{(74) } Z(n+1) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 1 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
0 \\
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix}. \]
\[\text{So } E(n) \cdot \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} = 2 \cos 2\pi k/(n+1) \begin{pmatrix}
\sin(2\pi k/(n+1)) \\
\vdots \\
\sin(2\pi kn/(n+1))
\end{pmatrix} \text{ and } \{2 \cos 2\pi k/(n+1)\} \text{ are eigenvalues of } E(n). \]
equation (74) for $\mathcal{Z}(2(n+1))$:

\[
\mathcal{Z}(2(n+1)) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & \cdots & 0 & 1 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \mathcal{E}(n) & & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & 0 & 1 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\vdots & 0 & 0 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\sin(2\pi k/2(n+1)) \\
\vdots \\
\sin(2\pi kn/2(n+1)) \\
0 \\
\vdots \\
\sin(2\pi k(2n+1)/2(n+1)) \\
\end{bmatrix}
\]

\[
= 2\cos 2\pi k/2(n+1) \begin{bmatrix}
0 & \sin(2\pi k/2(n+1)) \\
\vdots \\
\sin(2\pi kn/2(n+1)) \\
0 \\
\vdots \\
\sin(2\pi k(2n+1)/2(n+1)) \\
\end{bmatrix}
\]

where the second 0 in the $w'(2(n+1))$ occurs in the row of $\mathcal{Z}(2(n+1))$ directly above the second copy of $\mathcal{E}(n)$. This implies that the large array $\mathcal{Z}(2(n+1))$ can be regarded as effectively splitting into two copies of $\mathcal{E}(n)$ and two rows and columns of zeroes — in other words

\[
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & \cdots & 0 & 1 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \mathcal{E}(n) & & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & 0 & 1 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\vdots & 0 & 0 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & \cdots & 0 & 1 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \mathcal{E}(n) & & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & 1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & 0 & 1 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
1 & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\vdots & 0 & 0 & \vdots & \mathcal{E}(n) & 0 & \cdots & 0 \\
0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\sin(2\pi k/2(n+1)) \\
\vdots \\
\sin(2\pi kn/2(n+1)) \\
0 \\
\vdots \\
\sin(2\pi k(2n+1)/2(n+1)) \\
\end{bmatrix}
\]

This implies that the values \(\{2\cos 2\pi k/2(n+1) = 2\cos \pi k/(n+1)\}\) are also eigenvalues of $\mathcal{E}(n)$. Since there are n of these, and they are all distinct, we have found all of them. We summarize this:

Theorem 6.5. If the arrays $\mathcal{E}(n)$ are defined by

\[
\mathcal{E}(n) = \begin{cases}
1 & \text{if } |i - j| = 1 \\
0 & \text{otherwise}
\end{cases}
\]
then the eigenvalues are \(\{ \lambda_k = 2 \cos \frac{\pi k}{(n + 1)} \} \) for \(k = 1, \ldots, n \), and with corresponding eigenvectors:

\[
v_k = (\sin \frac{\pi k}{(n + 1)}, \sin 2\pi k/(n + 1), \ldots, \sin n\pi k/(n + 1))
\]

Now we will relate this with the numerical solutions of elliptic differential equations. We will assume that the domain of the solution (i.e., the region in which the function \(\psi \) is defined) is a rectangle defined by \(0 \leq x < a \) and \(0 \leq y < b \). The numeric approximation to the two dimensional Laplace equation is equation (63) on page 235:

\[
\psi(x, y) = \frac{1}{4} (\psi(x + \delta, y) + \psi(x - \delta, y) + \psi(x, y + \delta) + \psi(x, y - \delta))
\]

As a system of linear equations, this has \(\left\lfloor \frac{a}{\delta} \right\rfloor \times \left\lfloor \frac{b}{\delta} \right\rfloor \) equations, and the same number of unknowns (the values of \(\psi(j\delta, k\delta) \), for integral values of \(j \) and \(k \)).

Definition 6.6. We will call the matrix of this linear system \(E(r, s) \), where \(r = \left\lfloor \frac{a}{\delta} \right\rfloor \) and \(s = \left\lfloor \frac{b}{\delta} \right\rfloor \).

In greater generality, if we have a Laplace equation in \(n \) dimensions whose domain is an \(n \)-dimensional rectangular solid with \(s_i \) steps in coordinate \(i \) (i.e., the total range of \(x_i \) is \(s_i \delta \)), then

\[
E(s_1, \ldots, s_n)
\]

denotes the matrix for

\[
\frac{1}{2n} \psi(x_1 + \delta, \ldots, x_n) + \psi(x_1 - \delta, \ldots, x_n) + \psi(x, \ldots, x_n + \delta) + \psi(x, \ldots, x_n - \delta)
\]

Equation (66) on page 236 gives an example of this matrix. We will try to compute the eigenvalues of this matrix — this involves solving the system:

\[
\lambda \psi(x, y) = \psi(x + \delta, y) + \psi(x - \delta, y) + \psi(x, y + \delta) + \psi(x, y - \delta)
\]

Now we make an assumption that will allow us to express this linear system in terms of the arrays \(E(n) \), defined above (in 6.4 on page 244): we assume that \(\psi(x, y) \) can be expressed as a product of functions \(u(x) \) and \(v(y) \). The equation becomes:

\[
\lambda u(x) \cdot v(y) = \frac{u(x + \delta) \cdot v(y) + u(x - \delta) \cdot v(y) + u(x) \cdot v(y + \delta) + u(x) \cdot v(y - \delta)}{4} = \frac{(u(x + \delta) + u(x - \delta)) \cdot v(y) + u(x) \cdot (v(y + \delta) + v(y - \delta))}{4}
\]

If we divide this by \(u(x) \cdot v(y) \) we get

\[
\lambda = \frac{\frac{u(x + \delta) + u(x - \delta)}{4} + \frac{v(y + \delta) + v(y - \delta)}{4}}{u(x) \cdot v(y)}
\]

(75)

\[
\lambda = \frac{\frac{1}{4} u(x + \delta) + u(x - \delta)}{u(x)} + \frac{1}{4} v(y + \delta) + v(y - \delta)
\]

(76)

This is a very common technique in the theory of partial differential equations, called *separation of variables.*
Now we notice something kind of interesting:

We have a function of \(x \) (namely \(\frac{1}{4} u(x + \delta) + u(x - \delta) \)) added to

a function of \(y \) (namely \(\frac{1}{4} v(y + \delta) + v(y - \delta) \)) and the result is a constant.

It implies that a function of \(x \) can be expressed as constant minus a function of \(y \).

How is this possible? A little reflection shows that the only way this can happen is

for both functions (i.e., the one in \(x \) and the one in \(y \)) to individually be constants.

Our equation in two variables splits into two equations in one variable:

\[
\lambda = \lambda_1 + \lambda_2 \\
\lambda_1 = \frac{1}{4} u(x + \delta) + u(x - \delta) \\
\lambda_2 = \frac{1}{4} v(y + \delta) + v(y - \delta)
\]

or

\[
\lambda_1 u(x) = \frac{1}{4} (u(x + \delta) + u(x - \delta))
\]

and

\[
\lambda_2 v(y) = \frac{1}{4} (v(y + \delta) + v(y - \delta))
\]

Incidentally, the thing that makes this separation of variables legal is the fact that the region of definition of \(\psi(x, y) \) was a rectangle. It follows that eigenvalues of the original equation are sums of eigenvalues of the two equations in one variable.

Examination of the arrays that occur in these equations show that they are nothing but \(\frac{1}{4} E(r) \) and \(\frac{1}{4} E(s) \), respectively, where \(r = \left\lfloor \frac{a}{\delta} \right\rfloor \) and \(s = \left\lfloor \frac{b}{\delta} \right\rfloor \). Consequently, 6.5 on page 246 implies that

1. The possible values of \(\lambda_1 \) are \(\{2 \cos \frac{\pi j}{r + 1}/4 = \cos \frac{\pi j}{r + 1}/2 \} \);
2. The possible values of \(\lambda_2 \) are \(\{2 \cos \frac{\pi k}{s + 1}/4 = \cos \frac{\pi k}{s + 1}/2 \} \);
3. The eigenvalues of \(E(r, s) \) include the set of values \(\left\{ \frac{\cos \frac{\pi j}{r + 1}}{2} + \frac{\cos \frac{\pi k}{s + 1}}{2} \right\}, \) where \(j \) runs from 1 to \(r \) and \(k \) runs from 1 to \(s \).
4. Since \(\psi(x, y) = u(x)v(y) \) the eigenfunctions corresponding to these eigenvalues are, respectively,

\[
(\sin(\pi j/(r + 1)) \sin(\pi k/(s + 1)), \ldots, \sin(\pi jn/(r + 1)) \sin(\pi km/(s + 1)), \ldots, \sin(\pi j/(r + 1)) \sin(\pi k/(s + 1)))
\]

where \(m \) runs from 1 to \(r \) and \(n \) runs from 1 to \(s \).

It is possible to give a direct argument to show that these eigenfunctions are all linearly independent. Since there are \(r \times s \) of them, we have found them all. To summarize:
THEOREM 6.7. Suppose \(\delta > 0 \) is some number and \(r \geq 1 \) and \(s \geq 1 \) are integers. Consider the system of linear equations

\[
\lambda \psi(x, y) = \frac{\psi(x + \delta, y) + \psi(x - \delta, y) + \psi(x, y + \delta) + \psi(x, y - \delta)}{4}
\]

where:

1. \(0 \leq x < a = r\delta \) and \(0 \leq y < b = s\delta \), and
2. \(\psi(x, y) \) is a function that is well-defined at points \(x = n\delta \) and \(y = m\delta \), where \(n \) and \(m \) are integers;
3. \(\psi(0, x) = \psi(x, 0) = \psi(x, s\delta) = \psi(r\delta, y) = 0 \).

Then nonzero values of \(\psi \) only occur if

\[
\lambda = \left\{ \frac{1}{2} \left(\cos \frac{\pi j}{r+1} + \cos \frac{\pi k}{s+1} \right) = 1 - \frac{\pi^2 j^2}{4(r+1)^2} - \frac{\pi^2 k^2}{4(s+1)^2} + O(\delta^4) \right\}
\]

where \(j \) and \(k \) are integers running from 1 to \(r \) and 1 to \(s \), respectively.

PROOF. The only new piece of information in this theorem is the estimate of the values of the eigenvalues:

\[
\lambda = \left\{ 1 - \frac{\pi^2 j^2}{4(r+1)^2} - \frac{\pi^2 k^2}{4(s+1)^2} + O(\delta^4) \right\}
\]

This is a result of using the power series expansion of the cosine function:

\[
\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \ldots
\]

\[\square\]

We can compute the rate of convergence of the basic iterative solution to Laplace’s equation using 1.34 on page 152:

THEOREM 6.8. Consider the numeric approximation to Laplace’s equation in two dimensions, where \(\delta > 0 \) is the step-size, and \(0 < x < a \) and \(0 < y < b \). The basic Jacobi iteration method has an error that is reduced by a factor of

\[
\rho(E(r,s)) = \frac{1}{2} \left(\cos \frac{\pi j}{r+1} + \cos \frac{\pi k}{s+1} \right)
\]

\[
= 1 - \frac{\pi^2 j^2}{4(r+1)^2} - \frac{\pi^2 k^2}{4(s+1)^2} + O(\delta^4)
\]

\[
\approx 1 - \frac{\pi^2 \delta^2}{4} \left(\frac{1}{a^2} + \frac{1}{b^2} \right)
\]

where \(r = \left\lfloor \frac{a}{\delta} \right\rfloor \) and \(s = \left\lfloor \frac{b}{\delta} \right\rfloor \).

PROOF. The spectral radius of \(E(r,s) \) is equal to the largest value that occurs as the absolute value of an eigenvalue of \(E(r,s) \). This happens when \(j = k = 1 \) in the equation in 6.7 above. \[\square\]
We can estimate the optimum relaxation coefficient for the SOR method for solving Laplace’s equation, using the equation in 1.42 on page 160. We get:

\[
\omega = \frac{2}{1 + \sqrt{1 - \rho Z(A)^2}}
\]

(77)

(78)

\[
= \frac{2}{1 + \sqrt{1 - \left(1 - \frac{\pi^2 \delta_2}{4} \left(\frac{1}{a^2} + \frac{1}{b^2}\right)\right)^2}}
\]

(79)

\[
\approx \frac{2}{1 + \pi \delta \sqrt{\frac{1}{2a^2} + \frac{1}{2b^2}}}
\]

If we assume that \(a = b\) and \(a^2 = b^2 = A\), the area of the region, then equation (79) comes to resemble Garabedian’s formula (equation (67) on page 240).

Exercises.

6.8. Compute the eigenvalues and eigenvectors of the matrix \(E(r,s,t)\) define in 6.6 on page 247, where \(r, s,\) and \(t\) are integers.

6.2. Parabolic Differential Equations.

6.2.1. Basic Methods. These equations frequently occur in the study of diffusion phenomena in physics, and in quantum mechanics.

The simplest parabolic differential equation \(^{32}\) is called the Heat Equation. We have a function \(\psi(x_1, \ldots, x_n, t)\), where \(x_1, \ldots, x_n\) are spatial coordinates and \(t\) is time:

\[
\nabla^2 \psi = \frac{1}{a^2} \frac{\partial \psi}{\partial t}
\]

(80)

Here \(a\) is a constant called the rate of diffusion. In a real physical problem \(\psi\) represents temperature, and the heat equation describes how heat flows to equalize temperatures in some physical system.

Another common parabolic equation is the Schrödinger Wave Equation for a particle in a force field:

\[^{32}\text{For anyone who is interested, the most general parabolic equation looks like:}
\]

\[
\sum_{i,k} a_{ik} \frac{\partial^2 \psi}{\partial x_i \partial x_k} = f(x, \psi, \frac{\partial \psi}{\partial x})
\]

where \(a_{ik} = a_{ki} \text{ and } \det(a) = 0.\)
Here \hbar is Planck's Constant $/2\pi = 1.054592 \times 10^{-27}$ g cm2/sec, m is the mass of the particle, $i = \sqrt{-1}$, and $V(x,y,z)$ is potential energy, which describes the force field acting on the particle. Although this equation looks much more complicated than the Heat Equation, its overall behavior (especially from the point of view of numerical solutions) is very similar. Since \hbar, i, and m are constants they can be removed by a suitable change of coordinates. The only real additional complexity is the function $V(x,y,z)$. If this vanishes we get the Heat equation exactly. Unfortunately, physically interesting problems always correspond to the case where $V(x,y,z)$ is nonzero.

Incidentally, the physical interpretation of the (complex-valued) function $\psi(x,y,z,t)$ that is the solution of the Schrödinger Wave Equation is something that even physicists don’t completely agree on. It is generally thought that the absolute value of ψ (in the complex sense i.e., the sum of the squares of the real and imaginary parts) is the probability of detecting the particle at the given position in space at the given time.

As with the elliptic differential equations, we assume that the differential equation is valid in some region of space (or a plane) and we specify what must happen on the boundary of this region. When the differential equation contains time as one of its variables the boundary conditions usually take the form

We specify the value of $\psi(x_i, t)$ completely at some initial time t_0 over the domain Ω of the problem, and specify the behavior of ψ on the boundary of Ω at all later times.

Boundary conditions of this sort are often called *initial conditions*. The solution of the partial differential equation then gives the values of $\psi(x_i, t)$ at all times later than t_0, and over all of Ω.

Here is an example:

Example 6.9. Suppose we have an iron sphere of radius 5, centered at the origin. In addition, suppose the sphere is heated to a temperature of 1000 degrees K at time 0 and the boundary of the sphere is kept at a temperature of 0 degrees K. What is the temperature-distribution of the sphere at later times, as a function of x, y, z, and t?

Here we make Ω the sphere of radius 5 centered at the origin and we have the following boundary conditions:

- $\psi(x,y,z,0) = 1000$ for $(x,y,z) \in \Omega$;
- $\psi(x,y,z,t) = 0$, if $(x,y,z) \in \partial \Omega$ ($\partial \Omega$ denotes the boundary of Ω).

With these boundary conditions, it turns out that the 3-dimensional heat equation solves our problem:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{a^2} \frac{\partial \psi}{\partial t}$$

where we must plug a suitable value of a (the thermal conductivity of iron).

Our basic approach to a numerical solution remains the same as in the previous section — we replace $\nabla^2 \psi$ and now $\partial \psi / \partial t$ by *finite differences* and solve the resulting linear equations. We will work this out for the Heat equation. We get
Although this equation is rather formidable-looking we can rewrite it in the form (multiplying it by \(a^2\) and \(\delta t\), and replacing the numerical \(\nabla^2\psi\) by \(2n\delta^2(\bar{\psi} - \psi)\)):

\[
\psi(x_1, \ldots, x_n, t + \delta t) = \psi(x_1, \ldots, x_n, t) + \frac{2n a^2 \delta t}{\delta^2} (\bar{\psi} - \psi)
\]

where \(\bar{\psi}\) is defined in equation (56) on page 233.

This illustrates one important difference between parabolic and elliptic equations:

1. The value of \(\psi\) at time \(t + \delta t\) at a given point depends upon its value at time \(t\) at that point and at neighboring points (used to compute \(\bar{\psi}(t)\)). It is not hard to see that these, in turn, depend upon the values of \(\psi\) at time \(t - \delta t\) over a larger set of neighboring points. In general, as we go further back in time, there is an expanding (in spatial coordinates) set of other values of \(\psi\) that determine this value of \(\psi\) — and as we go back in time and plot these points they trace out a parabola (very roughly).

2. We use a different mesh-sizes for the time and space coordinates, namely \(\delta t\) and \(\delta\), respectively. It turns out that the iteration will diverge (wildly!) unless \(2n a^2 \delta t / \delta^2 < 1\) or \(\delta t < \delta^2 / 2na^2\). See proposition 6.10 on page 253 for a detailed analysis. This generally means that large numbers of iterations will be needed to compute \(\psi\) at late times.

In the parabolic case, we will specify the values of \(\psi\) over the entire region at time 0, and on the boundaries of the region at all times. We can then solve for the values of \(\psi\) at later times using equation 82. This can easily be translated into a C* program. Here is a simple program of this type:

```plaintext
num-chpr4
```

Figure 5.28 shows what the output looks like after 1 time unit has passed.

The height of the surface over each point represents the temperature at that point. You can see the heat “draining away” along the boundary.

6.2.2. Error Analysis. It is very important to analyze the behavior of numerical solutions of differential equations with respect to errors. These methods are necessarily approximations to the true solutions to the problems they solve, and it turns out that certain variations in the parameters to a given problem have a dramatic effect upon the amount of error that occurs.

Each iteration of one of these algorithms creates some finite amount of error, this error is carried forward into future iterations. It follows that there are two basic sources of error:

1. Stepwise error
2. Propagation of errors

\[\text{In this discussion, it looks like they trace out a cone, but in the limit, as } \delta t \to 0 \text{ it becomes a parabola.}\]
The first source is what we expect since we are approximating a continuous equation by a discrete one. The second source of error is somewhat more problematic—it implies that the quality of the solution we obtain degrades with the number of iterations we carry out. Since each iteration represents a time-step, it means that the quality of our solution degrades with time. It turns out that we will be able to adjust certain parameters of our iterative procedure to guarantee that propagation of error is minimized. In fact that total amount of error from this source can be bounded, under suitable conditions.

Consider the numeric form of the basic heat equation, \((82)\) on page 252. It turns out that the factor \(A = \frac{4n^2 \delta t}{\delta x^2}\) is crucial to the question of how errors propagate in the solution.

Proposition 6.10. In the \(n\)-dimensional heat equation, suppose that the act of replacing the partial derivatives by a finite difference results in an error bounded by a number \(E\) — i.e.,

\[
\left| \frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t} \right| \leq E \\
\left| \frac{2n(\psi_{\text{average}} - \psi)}{\delta^2} - \nabla^2 \psi \right| \leq E
\]

over the spatial region of the solution and the range of times that we want to study. Then the cumulative error of the solution in \((82)\) on page 252 is \(\leq \delta t E \left(1 + \frac{1}{|\mathbf{A}|^k}\right) (1 + A + A^2 + \cdots + A^k)\) in \(k\) time-steps of size \(\delta t\). Consequently, the total error is \(O(\delta t E \cdot A^{k+1})\) if \(A > 1\), and \(O(\delta t E \cdot (1 - A^{k+1})/(1 - A))\) if \(A < 1\).
It is interesting that if \(A < 1 \) the total error is bounded. In this analysis we haven’t taken into account the dependence of \(E \) on \(\delta t \). If we assume that \(\psi \) depends upon time in a fashion that is almost linear, then \(E \) may be proportional to \(\delta t^2 \).

We will assume that all errors due to flaws in the numerical computations (i.e., roundoff error) are incorporated into \(E \).

Proof. We prove this by induction on \(k \). We begin by showing that the error of a single iteration of the algorithm is \((1 + a^2)\delta t E \).

\[
\hat{E}_1 = \frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t},
\]

\[
\hat{E}_2 = \frac{4(\psi_{\text{average}} - \psi)}{\delta^2} - \nabla^2 \psi,
\]

so the hypotheses imply that

\[
|\hat{E}_1| \leq E
\]

\[
|\hat{E}_2| \leq E
\]

Suppose that \(\psi \) is an exact solution of the Heat equation. We will plug \(\psi \) into our approximate version of the Heat Equation and determine the extent to which it satisfies the approximate version. This will measure the amount of error in the approximate equation, since numerical solutions to those equations satisfy them exactly. Suppose

\[
\psi(t + \delta t) = \delta t \frac{\psi(t + \delta t) - \psi(t)}{\delta t} + \psi(t)
\]

\[
(83)
\]

\[
= \delta t \frac{\partial \psi}{\partial t} - \delta t \hat{E}_1 + \psi(t)
\]

\[
(84)
\]

\[
= \frac{\delta t}{a^2} \nabla^2 \psi - \delta t \hat{E}_1 + \psi(t) \quad \text{because } \psi \text{ satisfies the Heat equation}
\]

\[
(85)
\]

\[
= \frac{\delta t}{a^2} 4(\psi_{\text{average}} - \psi) - \frac{\delta t}{a^2} \hat{E}_2 - \delta t \hat{E}_1 + \psi(t)
\]

\[
(86)
\]

This implies that the error in one iteration of the algorithm is \(\leq \delta t E \left(1 + \frac{|a|^2}{|a|^2} \right) \).

Now we prove the conclusion of this result by induction. Suppose, after \(k \) steps the total error is \(\leq \delta t E \left(1 + \frac{1}{|a|^2} \right) \left(1 + A + A^2 + \cdots + A^k \right) \). This means that that

\[
|\hat{\psi} - \psi| \leq \delta t E \left(1 + \frac{1}{|a|^2} \right) \left(1 + A + A^2 + \cdots + A^k \right)
\]

where \(\hat{\psi} \) is the calculated value of \(\psi \) (from the algorithm). One further iteration of the algorithm multiplies this error-vector by a matrix that resembles \(2na^2\delta t (E(r,s) - I) \), where \(I \) is the identity-matrix with \(rs \) rows — using the notation of 6.8 on page 249. (We are also assuming that the region of definition of the original Heat equation is rectangular). The eigenvalues of this matrix are \(2na^2\delta t \) (eigenvalues of \(E(r,s) - I \)) and the maximum absolute value of such an eigenvalue is \(\leq 2na^2\delta t = A \). The result-vector has an 2-norm that is \(\leq A \cdot \delta t E \left(1 + \frac{1}{|a|^2} \right) \left(1 + A + A^2 + \cdots + A^k \right) = (1 + a^2)\delta t E \left(A + A^2 + \cdots + A^{k+1} \right) \).
Since this iteration of the algorithm also adds an error of $\delta t E\left(1 + \frac{1}{|a|^2}\right)$, we get a total error of $\delta t E\left(1 + A + A^2 + \cdots + A^{k+1}\right)$, which is what we wanted to prove. □

EXERCISES.

6.9. Analyze the two-dimensional Schrodinger Wave equation (equation (81) on page 251) in the light of the discussion in this section. In this case it is necessary to make some assumptions on the values of the potential, $V(x, y)$.

6.10. Find a finite-difference formulation of the equation

$$\frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial t^2} - \psi - 2e^{-t}$$

subject to the conditions that

$$\psi(x, 0) = x^2, \psi(0, t) = 0, \psi(1, t) = e^{-t}$$

Solve this equation numerically, and compare this result (for different values of Δ and Δt) to the exact solution

$$\psi(x, t) = x^2e^{-t}$$

6.2.3. Implicit Methods. The finite difference approximation methods described in the previous section have a basic flaw. Consider a parabolic partial differential equation in one dimension:

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial \psi}{\partial t}$$

In order to understand the behavior of solutions of this equation, it turns out to be useful to consider the domain of dependence of a point (x, t). This is the set of points (x', t') at earlier times with the property that the values of $\psi(x', t')$ influences the value of $\psi(x, t)$. It turns out that the domain of dependence of parabolic partial differential equations is a parabola in the x-t plane, as shown in figure 5.29 (this is why these equations are called parabolic). In fact this doesn’t tell the whole story — it turns out that the value of $\psi(x, t)$ depends upon points outside the parabola in figure 5.29 so some extent (although the “amount” of dependence falls off rapidly as one moves away from that parabola) — we should really have drawn a “fuzzy” parabola.\(^{34}\)

On the other hand, the finite difference equations like (82) on page 252 have a conical domain of dependence — see figure 5.30. Furthermore, unlike parabolic

\(^{34}\)This is because a fundamental solution of the Heat equation is $e^{-x^2/4t}$
differential equations, this domain of dependence is sharp. The finite-difference approximation of parabolic differential equations loses a significant amount of information. It turns out that there is another, slightly more complex, way of approximating parabolic differential equations that capture much of this lost information. We call these approximation-techniques, implicit methods. They are based upon a simple observation about how to approximate $\partial \psi / \partial t$. In formula (82) we used the expression

$$
\frac{\partial \psi}{\partial t} = \lim_{\delta t \to 0} \frac{\psi(x_1, \ldots, x_n, t + \delta t) - \psi(x_1, \ldots, x_n, t)}{\delta t}
$$

Implicit methods are based upon the fact that it is also true that

$$
\frac{\partial \psi}{\partial t} = \lim_{\delta t \to 0} \frac{\psi(x_1, \ldots, x_n, t) - \psi(x_1, \ldots, x_n, t - \delta t)}{\delta t}
$$

(87)

Note that the right sides of these equations are not the same, but they approach the same limit as $\delta t \to 0$. Using this approximation, we get the following equation for the parabolic partial differential equation:

$$
\psi(x_1, \ldots, x_n, t) - \psi(x_1, \ldots, x_n, t - \delta t) = \frac{2n a^2 \delta t}{\delta x^2} (\psi_{\text{average}} - \psi)
$$

Gathering together all terms of the form $\psi(x_1, \ldots, x_n, t)$ gives:

$$
\left(1 + \frac{2n a^2 \delta t}{\delta x^2}\right) \psi(x_1, \ldots, x_n, t) - \frac{2n a^2 \delta t}{\delta x^2} \psi_{\text{average}}(x_1, \ldots, x_n, t)
$$

$$
= \psi(x_1, \ldots, x_n, t - \delta t)
$$
6. PARTIAL DIFFERENTIAL EQUATIONS

We usually write the formula in a manner that computes \(\psi(x_1, \ldots, x_n, t + \delta t) \) from \(\psi(x_1, \ldots, x_n, t) \):

\[
(88) \quad \left(1 + \frac{2na^2\delta t}{\delta^2} \right) \psi(x_1, \ldots, x_n, t + \delta t) - \frac{2na^2\delta t}{\delta^2} \psi_{\text{average}}(x_1, \ldots, x_n, t + \delta t) = \psi(x_1, \ldots, x_n, t)
\]

There are several important differences between this formula and (82):

- Each iteration of this algorithm is much more complex than iterations of the algorithm in (82). In fact, each iteration of this algorithm involves a type of computation comparable to numerically solving a the Poisson equation. We must solve a system of linear equations for \(\psi(x_1, \ldots, x_n, t + \delta t) \) in terms of \(\psi(x_1, \ldots, x_n, t) \).

- Formula (82) explicitly expresses the dependence of \(\psi(x_1, \ldots, x_n, t + \delta t) \) upon \(\psi(\ast, t + \delta t) \) at neighboring points. It would appear, intuitively, that the domain of dependence of \(\psi \) is more like the parabola in figure 5.29. This turns out to be the case.

- It turns out (although this fact might not be entirely obvious) that this algorithm is usually much more numerically stable than that in equation (82). In fact it remains numerically stable even for fairly large values of \(\delta t \). See §6.14 on page 260 for a precise statement.

On balance, it is usually advantageous to use the implicit methods described above. Although the computations that must be performed for each iteration of \(\delta t \) are more complicated, the number of iterations needed is generally much less since the present algorithm is more accurate and stable. See §6.2.4 on page 259.
for a detailed analysis. As remarked above, we must solve a system of linear equations in order to compute it in terms of \(\psi(x_1, \ldots, x_n, t) \). We can use iterative methods like the Jacobi method discussed in §1.2.3 on page 151. Our basic iteration is:

\[
\left(1 + \frac{2na^2\delta t}{\delta^2}\right)\psi^{(k+1)}(x_1, \ldots, x_n, t + \delta t) - \frac{2na^2\delta t}{\delta^2}\psi_{\text{average}}(x_1, \ldots, x_n, t + \delta t)
= \psi(x_1, \ldots, x_n, t)
\]

where \(\psi^{(k+1)}(x_1, \ldots, x_n, t + \delta t) \) is the \(k+1 \)st approximation to \(\psi(x_1, \ldots, x_n, t + \delta t) \), given \(\psi^{(k)}(x_1, \ldots, x_n, t + \delta t) \) and \(\psi(x_1, \ldots, x_n, t) \). Note that \(\psi(x_1, \ldots, x_n, t) \) plays the part of \(b \) in the linear system \(Ax = b \). We assume the values of the \(\psi(x_1, \ldots, x_n, t) \) are known. We may have to perform many iterations in order to get a reasonable value of \(\psi(x_1, \ldots, x_n, t + \delta t) \). We rewrite this equation to isolate \(\psi^{(k+1)}(x_1, \ldots, x_n, t + \delta t) \):

\[
(89) \quad \psi^{(k+1)}(x_1, \ldots, x_n, t + \delta t) = \frac{\psi(x_1, \ldots, x_n, t) + \frac{2na^2\delta t}{\delta^2}\psi_{\text{average}}(x_1, \ldots, x_n, t + \delta t)}{\left(1 + \frac{2na^2\delta t}{\delta^2}\right)}
\]

It turns out that the molecule of these finite-difference equations is the same as that depicted in figure 5.25 on page 239. It follows that we can speed up the convergence of the iteration by using the consistently-ordered methods (see §1.2.5 on page 157), with the odd-even ordering vector discussed in 6.3 on page 239. Unfortunately we have no simple way to determine the optimal overrelaxation coefficient.

Once we have found a reasonable value of \(\psi(x_1, \ldots, x_n, t + \delta t) \), we are in a position to compute \(\psi(x_1, \ldots, x_n, t + 2\delta t) \) and so on. We may also use multigrid methods like those described on page 241 in each phase of this algorithm.

Exercises.

6.11. Formulate the Schrödinger wave equation (equation (81) on page 251) in an implicit iteration scheme.
6.2.4. **Error Analysis.** In this section we will show that implicit methods are far better-behaved than the explicit ones with regards to propagation of errors. In fact, regardless of step-size, it turns out that the total propagation of error in implicit methods is strictly bounded. We will perform an analysis like that in § 6.2.2 on page 252.

As in § 6.2.2 we will assume that
1. $0 \leq x < a = r\delta$ and $0 \leq y < b = s\delta$, and
2. $\psi(x, y)$ is a function that is well-defined at points $x = n\delta$ and $y = m\delta$, where n and m are integers, and for values of t that are integral multiples of a quantity $\delta t > 0$;

We will examine the behavior of the linear system (88) on page 257 in the case where the original differential equation was two dimensional:

$$
(1 + \frac{4a^2\delta t}{\delta^2}) \psi(x, y, t + \delta t) - \frac{4a^2\delta t}{\delta^2} \psi_{\text{average}}(x, y, t + \delta t) = \psi(x, y, t)
$$

We will regard this as an equation of the form

$$(90) \quad Z\psi(t + \delta t) = \psi(t)$$

and try to determine the relevant properties of the matrix Z (namely the eigenvalues) and deduce the corresponding properties of Z^{-1} in the equation:

$$(91) \quad \psi(t + \delta t) = Z^{-1}\psi(t)$$

Claim 6.11. The matrix Z in equation (90) is equal to

$$
\left(1 + \frac{4a^2\delta t}{\delta^2}\right) I_{rs} - \frac{4a^2\delta t}{\delta^2} E(r, s)
$$

where I_{rs} is an $rs \times rs$ identity matrix.

This follows from the fact that the first term of (88) on page 257 simply multiplied its factor of ψ by a constant, and the second term simply subtracted a multiple of ψ_{average} — whose matrix-form is equal to $E(r, s)$ (see 6.6 on page 247). This, and exercise 1.8 on page 147 and its solution on page 435 imply:

Claim 6.12. The eigenvalues of the matrix Z defined above, are

$$\left\{1 + \frac{4a^2\delta t}{\delta^2} - \frac{4a^2\delta t}{2\delta^2} \left(\cos \frac{\pi j}{r+1} + \cos \frac{\pi k}{s+1}\right)\right\}
$$

where $1 \leq j \leq r$ and $1 \leq k \leq s$ are integers.

Now 1.19 on page 143 implies that

Proposition 6.13. The eigenvalues of the matrix Z^{-1} in equation (91) above are

$$\frac{1}{1 + \frac{4a^2\delta t}{\delta^2} - \frac{4a^2\delta t}{2\delta^2} \left(\cos \frac{\pi j}{r+1} + \cos \frac{\pi k}{s+1}\right)}$$

The eigenvalue with the largest absolute value is the one for which the cosine-terms are as close as possible to 1. This happens when $j = k = 1$. The spectral radius of Z^{-1} is, consequently,

$$\rho(Z^{-1}) = \frac{\delta^2}{\delta^2 + 4a^2\delta t - 2a^2\delta t \cos(\frac{\pi}{r+1}) - 2a^2\delta t \cos(\frac{\pi}{s+1})} < 1$$
since \(\cos \left(\frac{\pi}{r+1} \right) < 1 \) and \(\cos \left(\frac{\pi}{s+1} \right) < 1 \). This means that the implicit methods are always numerically stable. We can estimate the influence of \(r, s \) and \(\delta \) on the degree of numerical stability:

\[
\rho(Z^{-1}) = 1 - \frac{a^2 \delta t \pi^2}{\delta^2} \left(\frac{1}{r^2} + \frac{1}{s^2} \right) + O\left(\frac{\delta^4}{ru^2} \right)
\]

where \(u + v \geq 4 \).

In analogy with 6.10 on page 253, we get:

Proposition 6.14. In the 2-dimensional heat equation, suppose that the act of replacing the partial derivatives by a finite difference results in a bounded error:

\[
\left| \frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t} \right| \leq E_1(\delta t)
\]

\[
\left| \frac{4(\psi_{\text{average}} - \psi)}{\delta^2} - \nabla^2 \psi \right| \leq E_2(\delta)
\]

over the spatial region of the solution and the range of times that we want to study. We have written \(E_1 \) and \(E_2 \) as functions of \(\delta t \) and \(\delta \), respectively, to represent their dependence upon these quantities. Then the cumulative error of using the implicit iteration scheme is

\[
\leq \frac{\delta^2}{a^2 \pi^2} \left(E_1(\delta t) + \frac{\delta^2}{a^2} E_2(\delta) \right) \frac{r^2 s^2}{r^2 + s^2}
\]

As before, we assume that roundoff error is incorporated into \(E_1 \) and \(E_2 \). Compare this result with 6.10 on page 253.

Proof. First we compute the error made in a single iteration. Suppose

\[
\hat{E}_1 = \frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t}
\]

\[
\hat{E}_2 = \frac{4(\psi_{\text{average}} - \psi)}{\delta^2} - \nabla^2 \psi
\]

so the hypotheses imply that

\[
|\hat{E}_1| \leq E_1(\delta t)
\]

\[
|\hat{E}_2| \leq E_2(\delta)
\]

As in the explicit case we will assume that \(\psi \) is an exact solution of the Heat Equation. We will plug this exact solution into our finite-difference approximation and see how closely it satisfies the finite-difference version. This will measure the error in using finite differences. We will get equations very similar to equations (83) through (86) on page 254:

\[
\psi(t + \delta t) = \delta t \frac{\psi(t + \delta t) - \psi(t)}{\delta t} + \psi(t) \text{ exactly}
\]

\[
\frac{\delta t}{\partial t} (t + \delta t) - \delta t \hat{E}_1 + \psi(t)
\]

\[
\frac{\delta t}{a^2} \nabla^2 \psi(t + \delta t) - \delta t \hat{E}_1 + \psi(t) \text{ because } \psi \text{ satisfies the Heat equation}
\]

\[
\frac{\delta t}{a^2} 4(\psi_{\text{average}}(t + \delta t) - \psi(t + \delta t)) - \frac{\delta t}{a^2} \hat{E}_2 - \delta t \hat{E}_1 + \psi(t)
\]
This implies that the total error made in a single iteration of the algorithm is

\[
E = \left| \frac{\delta t}{a^2} \tilde{E}_2 - \delta t \tilde{E}_1 \right| \leq \delta t \left(E_1 + \frac{1}{a^2} E_2 \right)
\]

In the next iteration this error contributes a cumulative error \(E_A = \rho(Z^{-1}) \), and \(k \) iterations later its effect is \(\leq E A^k \). The total error is, consequently

\[
E \left(1 + A + A^2 \ldots \right) \leq E = \frac{E}{1 - A}
\]

The estimate

\[
\rho(Z^{-1}) = 1 - \frac{a^2 \delta t \pi^2 \left(\frac{1}{r^2} + \frac{1}{s^2} \right) + O(\delta^4)}{r^2 s^2}
\]

now implies the conclusion. \(\square \)

Exercises.

6.12. Show that the implicit methods always work for the Schrödinger wave equation (equation (81) on page 251). (In this context “work” means that total error due to propagation of errors is bounded.)

6.3. Hyperbolic Differential Equations.

6.3.1. Background. The simplest hyperbolic partial differential equation is the Wave Equation\(^{35}\). We have a function \(\psi(x_1, \ldots, x_n, t) \), where \(x_1, \ldots, x_n \) are spatial coordinates and \(t \) is time:

\[
\nabla^2 \psi = \frac{1}{a^2} \frac{\partial^2 \psi}{\partial t^2}
\]

As its name implies, this equation is used to describe general wave-motion. For instance, the 1-dimensional form of the equation can be used to describe a vibrating string:

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 \psi}{\partial t^2}
\]

\(^{35}\)Not to be confused with the Schrödinger Wave Equation (81).
Here, the string lies on the x-axis and ψ represents the displacement of the string from the x-axis as a function of x and t (time). The Wave Equation in two dimensions can be used to describe a vibrating drumhead. Another example is

$$
\frac{\partial^2 \psi}{\partial t^2} - c^2 \frac{\partial^2 \psi}{\partial x^2} - 2 \frac{\partial \psi}{\partial t} = 0
$$

This is known as the telegraph equation — it describes the propagation of electric current in a wire with leakage.

It is possible to give a closed-form expression for the general solution of the one-dimensional wave equation (93):

$$
\psi(x, t) = \frac{\psi_0(x + at) + \psi(x - ai)}{2} + \frac{1}{2} \int_{x-at}^{x+at} \psi_1(u) \, du
$$

where $\psi_0 = \psi(x, 0)$, and $\psi_1 = \partial \psi / \partial t |_{t=0}$. This is known as d’Alembert’s solution. Similar (but more complex) solutions exist for higher-dimensional wave equations — these generally involve complex integrals. d’Alembert

Now we discuss the issue of boundary conditions for hyperbolic partial differential equations. They are similar to but slightly more complicated than boundary conditions for parabolic equations because one usually must specify not only the value of ψ at some time, but also its time-derivative:

We specify the values of $\psi(x_i, t)$ and $\frac{\partial \psi(x_i, t)}{\partial t}$ completely at some initial time t_0 over the domain Ω of the problem, and specify the behavior of ψ on the boundary of Ω at all later times.

The additional complexity of these boundary conditions have a simple physical interpretation in the case of the wave equation. We will consider the one-dimensional wave equation, which essentially describes a vibrating string (in this case, $\psi(x, t)$ represents the displacement of the string, as a function of time and x-position).

- Specifying the value of ψ at time 0 specifies the initial shape of the string. If this is nonzero, but $\frac{\partial \psi(x_i, t)}{\partial t} \bigg|_{t=0} = 0$, we have a plucked string.

- Specifying $\frac{\partial \psi(x_i, t)}{\partial t} \bigg|_{t=0} \neq 0$ but $\psi(x, 0) = 0$ we have a “struck” string (like in a piano).

Note that we can also have all possible combinations of these conditions.

Generally speaking, the best approach to finding numerical solutions to hyperbolic partial differential equations is via the method of characteristics (related to the integral-formulas for solutions mentioned above). See [6] for a discussion of the method of characteristics.

6.3.2. Finite differences. We will use the same technique as before — we convert the equation into a finite difference equation. The fact that the equation is hyperbolic gives rise to some unique properties in the finite difference equation.
\[
\frac{\psi(x_1, \ldots, x_n, t + 2\delta t) - 2\psi(x_1, \ldots, x_n, t + \delta t) + \psi(x_1, \ldots, x_n, t)}{\delta t^2} = \frac{2na^2}{\delta^2} (\psi_{\text{average}} - \psi)
\]

which means that

\[
\psi(x_1, \ldots, x_n, t + 2\delta t)
\]

\[
= 2\psi(x_1, \ldots, x_n, t + \delta t) - \psi(x_1, \ldots, x_n, t) + \frac{2na^2\delta^2}{\delta^2} (\psi_{\text{average}} - \psi)
\]

where \(\psi_{\text{average}}\) has the meaning it had in 6.2.1 — it is given in equation (56) on page 233.

Note that this equation presents its own unique features: initially we can specify not only the value of \(\psi\) at an initial time, but we can also specify the value of \(\frac{\partial \psi}{\partial t}\).

As mentioned in the discussion on page 262, there are two possibilities for the boundary conditions:

1. The “plucked” case — here \(\psi\) is initially nonzero, but \(\frac{\partial \psi}{\partial t} = 0\), initially. In this case we set \(\psi(x_1, \ldots, x_n, \delta t) = \psi(x_1, \ldots, x_n, 0)\) and we continue the numerical solution from \(\psi(x_1, \ldots, x_n, 2\delta t)\) on.
2. The “struck” case. In this case \(\psi = 0\) initially, but we specify other initial values for \(\frac{\partial \psi}{\partial t}\). This is done numerically by setting \(\psi(x_1, \ldots, x_n, \delta t) = (\frac{\partial \psi}{\partial t})_{\text{Initial}}\delta t\) and solving for \(\psi\) at later times, using 95.

The numeric algorithm tends to be unstable unless the value of \(\Delta \psi / \Delta t\) is bounded. In general, we must set up the initial conditions of the problem so that \(\psi\) doesn’t undergo sudden changes over the spatial coordinates.

Excellent analytic solutions can be found in many cases where the boundary has some simple geometric structure. For instance, in the case where the drumhead is rectangular the exact analytic solution can be expressed in terms of series involving sines and cosines (Fourier series). In the case where it is circular the solution involves Bessel functions. Since analytic solutions are preferable to numeric ones whenever they are available, we won’t consider such regular cases of the wave equation. We will consider a situation in which the boundary is fairly irregular: it is a rectangular region with a corner chopped off and a fixed disk — i.e., a disk in the rectangle is held fixed. Figure 5.31 shows what this looks like.

Here is a C* program that implements this algorithm in the “plucked” case:

```
num-chpr5
```

Here canmove is a parallel variable that determines whether the iteration steps are carried out in a given cycle through the loop. It defines the shape of the region over which the calculations are performed. The initial values of \(\psi\) were computed in such a way that it tends to 0 smoothly as one approaches the boundary.

The change in \(\psi\) as time passes is plotted in figures 5.32 through 5.34.
Figure 5.31. Boundary conditions

Figure 5.32. Initial configuration.

Figure 5.33. After 80 iterations.
6. PARTIAL DIFFERENTIAL EQUATIONS

6.13. Analyze the telegraph equation (equation (94) on page 262), and formulate it in terms of finite differences. Write a C* program for solving the telegraph equation.

6.4. Further reading. Theoretical physics has provided much of the motivation for the development of the theory of partial differential equations. See [120]
and [38] for compendia of physics problems and the differential equations that arise from them.

We have not discussed mixed partial differential equations. In general the question of whether a partial differential equation is elliptic, parabolic, or hyperbolic depends on the point at which one tests these properties. Partial differential equations of mixed type have characteristics that actually change from one point to another — in some regions they may be elliptic and in others they may be parabolic, for instance. Here is an example

\[(97) \quad \left(1 - \frac{u^2}{c^2}\right) \frac{\partial^2 \psi}{\partial x^2} - \frac{2uv}{c^2} \frac{\partial^2 \psi}{\partial x \partial y} + \left(1 - \frac{v^2}{c^2}\right) \frac{\partial^2 \psi}{\partial y^2} = 0\]

This the the equation of 2-dimensional stationary flow without rotation, of a compressible fluid without viscosity. Here \(\psi\) is the velocity potential and

\[u = \frac{\partial \psi}{\partial x}\]
\[v = \frac{\partial \psi}{\partial y}\]

are the actual components of the velocity. The number \(c\) is the local speed of sound within the fluid — this is some known function of \(q = \sqrt{u^2 + v^2}\) (it depends upon the problem). Equation (97) is elliptic if \(q < c\) and the flow is said to be subsonic. If \(q > c\) the flow is supersonic and the equation is hyperbolic. As this discussion implies, these equations are important in the study of supersonic fluid flows — see [37] and [14] for applications of mixed differential equations to supersonic shock waves.

We have not touched upon the use of finite element methods to numerically solve partial differential equations. See [125] for more information on finite-element methods.

Another method for solving partial differential equations that is gaining wider usage lately is the boundary element method. This is somewhat like the methods discussed on page 262 for solving hyperbolic equations. The basic idea of boundary element methods is that (for a linear differential equation) any linear combination of solutions is also a solution. Boundary element methods involve finding fundamental solutions to differential equations and expressing arbitrary solutions as sums or integrals of these fundamental solutions, using numerical integration algorithms like those in § 5 on page 222.
CHAPTER 6

A Survey of Symbolic Algorithms

In this section we will present a number of symbolic algorithms for the P-RAM computer (since we now know that it can be efficiently simulated by bounded-degree network computers).

1. Doubling Algorithms

1.1. General Principles. In this section we will present a number of P-RAM algorithms that are closely related. They may be regarded as generalizations of the simple algorithm for adding numbers presented in the introduction, and the sample program in § 3 of chapter 4. There are various names for this family of algorithms: doubling algorithms, parallel-prefix algorithms and cyclic reduction algorithms. The different name reflect different applications of this general technique.

The example on page 58 (and the C* program in § 3) of chapter 4 shows how to add \(n \) numbers in \(O(\lg n) \)-time. The Brent Scheduling Principle (5.22 on page 45) immediately enables the same computations to be carried out with fewer processors — see 1.6 and 1.7 on page 270. It is not hard to see that this same procedure also works to multiply \(n \)-numbers in \(O(\lg n) \)-time. We can combine these to get:

Proposition 1.1. A degree-\(n \) polynomial can be evaluated in \(O(\lg n) \) time on a PRAM computer with \(O(n) \) processors.

Exercises.

1.1. Write a C* routine to evaluate a polynomial, given an array of coefficients.

We also get:

Proposition 1.2. Two \(n \times n \) matrices \(A \) and \(B \) can be multiplied in \(O(\lg n) \)-time using \(O(n^3) \) processors.

Proof. The idea here is that we form the \(n^3 \) products \(A_{ij}B_{jk} \) and take \(O(\lg n) \) steps to sum over \(j \). \(\square \)
Since there exist algorithms for matrix multiplication that require fewer than n^3 multiplications (the best current asymptotic estimate, as of as of 1991, is $n^{2.376}$ multiplications — see [34]) we can generalize the above to:

Corollary 1.3. If multiplication of $n \times n$ matrices can be accomplished with $M(n)$ multiplications then it can be done in $O(\lg n)$ time using $M(n)$ processors.

This algorithm provides some motivation for using the sample program in §3 of chapter 4: Adding up n numbers efficiently can be done easily by writing

```c
int total;
with(example)
    total += number;
```

— the C* compiler will automatically use an efficient (i.e $O(\lg n)$-time) algorithm because we are adding instance variables to a mono quantity.

Now we will consider a variation on this algorithm that computes all of the cumulative partial sums. It is illustrated in figure 6.1.

The top row of figure 6.1 has the inputs and each succeeding row represents the result of one iteration of the algorithm. The curved arrows represent additions that take place in the course of the algorithm. The bottom row has the cumulative sums of the numbers on the top row.

The formal description of this algorithm is as follows:

Algorithm 1.4. Suppose we have a sequence of $n = 2^k$ numbers. The following procedure computes all of the partial sums of these integers in k steps using $n/2$ processors (in a CREW parallel computer).

```c
for i ← 0 to k − 1 do in parallel
    Subdivide the $n$ numbers into $2^k − i − 1$ subsequences
    of $2^{i+1}$ numbers each: we call these subsequences
    \{e_{ij}\}, where $j$ runs from 0 to $2^k − i − 1 − 1$
    Subdivide each of the \{e_{ij}\} into an upper and lower half
In parallel add the highest indexed number in
    the lower half of each of the $e_{ij}$
    to each of the numbers in the upper half of the same $e_{ij}$.
```
That this algorithm *works* is not hard to see, via induction:

We assume that at the beginning of each iteration, each of the *halves* of each of the \{e_{ij}\} contains a cumulative sum of the original inputs within its index-range. The computation in an iteration clearly makes each of the \{e_{ij}\} satisfy this condition.

If we want to express this algorithm in a language like C* we must do a little more work:

We suppose that the input numbers are \{m_0, \ldots, m_{n-1}\}.

1. A number \(m_\ell\) is contained in \(e_{ij}\) if and only if \(\ell/2^{i+1} \leq j\).
2. A number \(m_\ell\), in \(e_{ij}\), is also in the lower half of \(e_{ij}\) if and only if the \(i\)-bit position (i.e. the multiple of \(2^i\) in its binary expansion) of \(\ell\) is 0.
3. Similarly, a number \(m_\ell\), in \(e_{ij}\), is also in the upper half of \(e_{ij}\) if and only if the \(i\)-bit position of \(\ell\) is 1. These are the numbers that get other numbers added to them in the iteration of the algorithm.
4. Suppose \(m_\ell\), is in the upper half of \(e_{ij}\). How do we compute the position of the highest numbered element in the lower half of the same \(e_{ij}\), from \(\ell\) itself? This is the number that gets added to \(m_\ell\) in iteration \(i\) of algorithm 1.4. The answer to this question is that we determine the position of the lowest numbered element in the upper half of \(e_{ij}\), and take the position that precedes this. This amounts to:
 - Compute \(j = \lfloor \ell/2^{i+1} \rfloor\).
 - The lowest-numbered element of \(e_{ij}\) is \(j \cdot 2^{i+1}\).
 - The lowest-numbered element of the upper half of \(e_{ij}\) is \(j \cdot 2^{i+1} + 2^i\).
 - The element that precedes this is numbered \(j \cdot 2^{i+1} + 2^i - 1\).

It follows that iteration \(i\) of the algorithm does the operation

\[
m_\ell \leftarrow m_\ell + m_\ell_0\]

where

\[
\ell_0 = \lfloor \ell/2^{i+1} \rfloor \cdot 2^{i+1} + 2^i - 1
\]

The net result of all this is a C* program like that on page 103. This algorithm for adding up \(n\) numbers, works for any associative binary operation:

Proposition 1.5. Let \(A\) denote some algebraic system with an associative composition-operation \(*\), i.e. for any \(a, b, c \in A\), \((a * b) * c = a * (b * c)\). Let \(a_0, \ldots, a_{n-1}\) be \(n\) elements of \(A\). If the computation of \(a * b\) for any \(a, b \in A\), can be done in time \(T\) then the computation of \(\{a_0, a_0 * a_1, \ldots, a_0 * \cdots * a_{n-1}\}\) can be done in time \(O(T \lg n)\) on a PRAM computer with \(O(n)\) processors.

The problem of computing these cumulative composites is called the *Parallel Prefix Problem*. Note that if the operation wasn’t associative the (non-parenthesized) composite \(a_0 * \cdots * a_{n-1}\) wouldn’t even be *well-defined*.

Proof. We follow the sample algorithm in the introduction (or the C* program in \(\S 3\) in chapter 4) exactly. In fact we present the algorithm as a pseudo-C* program:

```c
shape [N]computation;
struct pdata:computation {
    datatype an: /* Some data structure*/
```
containing

an */

int PE_number;
int lower(int);
void operate(int);
};

int:computation lower (int iteration)
{
 int next_iter=iteration+1;
 int:computation PE_num_reduced = (PE_number >>
next_iter)<<next_iter;
 return PE_num_reduced + (1<<iteration) − 1;
}
void pdata::operate(int iteration)
{
 where (lower(iteration)<PE_number)
 an = star_op(lower(iteration)an,an);
}

Here star_op(a,b) is a procedure that computes $a \ast b$. It would have to be declared via something like:

datatype:current starop(datatype:current,
datatype:current)

We initialize $[i]an$ with a_i and carry out the computations via:

for(i=0,i<=log(N)+1;i++)
with (computation) operate(i);

At this point, PE[i].an will equal $a_0 \ast \cdots \ast a_i$. □

The Brent Scheduling Principle implies that the number of processors can be reduced to $O(n/\lg n)$:

The following result first appeared in [27]:

Algorithm 1.6. Let \(\{a_0, \ldots, a_{n-1}\} \) be \(n \) elements, let \(\ast \) be an associative operations. Given \(K \) processors, the quantity \(A(n) = a_0 \ast \cdots \ast a_{n-1} \) can be computed in \(T \) parallel time units, where

\[
T = \begin{cases}
\lfloor n/K \rfloor − 1 + \lg K & \text{if } \lfloor n/2 \rfloor > K \\
\lg n & \text{if } \lfloor n/2 \rfloor \leq K
\end{cases}
\]

This is a direct application of 5.22 on page 45.

In the first case, we perform sequential computations with the \(K \) processors until the number of data-items is reduced to 2\(K \). At that point, the parallel algorithm 2 it used. Note that the last step is possible because we have reduced the number of terms to be added to the point where the original algorithm works.

This immediately gives rise to the algorithm:
COROLLARY 1.7. Let \(\{a_0, \ldots, a_{n-1}\} \) be \(n \) elements, let \(\star \) be an associative operation. Given \(n / \lg n \) processors, the quantity \(A(n) = a_0 \star \cdots \star a_{n-1} \) can be computed in \(O(\lg n) \) parallel time units.

We conclude this section with an algorithm for the related List Ranking Problem:

We begin with a linked list \(\{a_0, \ldots, a_{n-1}\} \), where each element has a \texttt{NEXT} pointer to the next entry in the list. (See figure 6.2). For all \(i \) from 0 to \(n-1 \) we want to compute the rank of \(a_i \) in this list.

The standard algorithm for doing this is called Pointer Jumping — it is often a preparatory step to applying the parallel-prefix computations described above.

ALGORITHM 1.8. List-Ranking The list-ranking problem can be solved on a SIMD-PRAM computer in \(O(\lg n) \)-time using \(O(n) \) processors.

\[
\begin{align*}
\text{INPUT:} & \quad \text{A linked list} \ \{a(0), \ldots, a(n-1)\} \ \text{with NEXT-pointers:} \ N(i) \ \text{(where} \ N(i) \ \text{is the subscript value of the next entry in the linked list).} \\
\text{OUTPUT:} & \quad \text{An array} \ R(i) \ \text{giving the rank of} \ a(i) \ \text{in the linked list. This is equal to the distance of} \ a(i) \ \text{from the end of the list.} \\
\text{We assume there is one processor/list entry.} \\
\text{for processors} \ i \ \text{from} \ 0 \ \text{to} \ n-1 \ \text{do in parallel} \\
& \quad \text{if} \ N(i) = \texttt{NULL} \ \text{then} \\
& \quad \quad \ R(i) \leftarrow 0 \\
& \quad \quad \ \text{else} \\
& \quad \quad \ R(i) \leftarrow 1 \\
& \quad \text{endif} \\
& \quad \text{for} \ i \leftarrow 0 \ \text{until} \ i \geq \lfloor \lg n \rfloor \ \text{do} \\
& \quad \quad \ R(i) \leftarrow R(i) + R(N(i)) \\
& \quad \quad \ N(i) \leftarrow N(N(i)) \\
& \quad \text{endfor} \\
& \text{endfor} \\
\end{align*}
\]

This is illustrated by figures 6.3 through 6.5.

Now we prove that the algorithm works. We use induction on \(n \). Suppose \(n = 2^k \) is a power of 2 and the algorithm works for \(n = 2^{k-1} \). This assumption is clearly true for \(k = 0 \).

The crucial step involves noting:

- Given a list of size \(2^k \) we can perform the algorithm for \(k-1 \) iterations on this list. The inductive assumption implies that the “right” half of this
list will be correctly ranked. Furthermore, the ranking of these elements won’t change during the next iteration.

- that in each iteration, the number of edges between \(a(i) \) and \(a(N(i)) \) is equal to \(R(i) \). This implies the result since, in iteration \(k \), the “left” half of the list of size \(2^k \) will also be correctly ranked, since they are \(2^{k-1} \) edges away from elements of the “right” half, which are correctly ranked (by the inductive assumption).

EXERCISES.

1.2. Can the Cumulative sum algorithm (1.4 on page 268) be expressed in terms of the generic ASCEND or DESCEND algorithms on page 58?

1.3. *Huffman encoding* involves reducing a mass of data to a bit-string and a *decoding tree* — see figure 6.6 on the facing page.

The corresponding decoding operation involves scanning the bit-string and tracing through the decoding tree from the root to a leaf. That leaf is the decoded value of the few bits that led to it. After each leaf, the process starts anew at the root of the decoding tree and the next bit in the string. For instance, the string 1011001 decodes to the data ABAC, using the decoding tree in figure 6.6 on the next page. Clearly, a Huffman-encoded string of length \(n \) can be *sequentially* decoded in time that is \(O(n) \). Give a PRAM-parallel algorithm for decoding such a string in time \(O(\lg n) \), using \(O(n) \) processors.
1.2. Recurrence Relations. Next, we consider the problem of solving recurrence-relations. These are equations of the form:

\[x_i = x_{i-1} - 2x_{i-2} + 1 \]

and the problem is to solve these equations for all the \(\{x_i\} \) in terms of some finite set of parameters — in this particular case \(x_0 \) and \(x_1 \). Failing this we can try to compute \(x_0, \ldots, x_n \) for some large value of \(n \).

Recurrence-relations occur in a number of areas including:

- Markov-processes.
- Numerical solutions of ordinary differential equations, where a differential equation is replaced by a finite-difference equation. See [172] — this is an entire book on recurrence relations.
- Series solutions of differential equations, in which a general power-series is plugged into the differential equation, usually give rise to recurrence relations that can be solved for the coefficients of that power-series. See [149] for more information on these topics.
- The Bernoulli Method for finding roots of algebraic equations. We will briefly discuss this last application.

Suppose we want to find the roots of the polynomial:

\[f(x) = x^n + a_1x^{n-1} + \cdots + a_n = 0 \]

Let \(S_0 = S_1 = \cdots = S_{n-2} = 0 \) and let \(S_{n-1} = 1 \). Now we define the higher terms of the sequence \(\{S_i\} \) via the recurrence relation

\[S_k = -a_1S_{k-1} - a_2S_{k-2} - \cdots - a_nS_{k-n} \]

Suppose the roots of \(f(x) = 0 \) are \(\alpha_1, \alpha_2, \ldots, \alpha_n \) with \(|\alpha_1| \geq |\alpha_2| \geq \cdots \geq |\alpha_n| \).

It turns out that, if \(\alpha_1 \) is a real, simple root, then

\[\lim_{k \to \infty} \frac{S_k}{S_{k-1}} = \alpha_1 \]
If \(\alpha_1, \alpha_2 \) are a pair of complex conjugate roots set \(\alpha_1 = Re^{i\theta}, \alpha_2 = Re^{-i\theta} \). If \(|\alpha_3| < R \), then

\[
L_1 = \lim_{k \to \infty} \frac{S_k^2 - S_{k+1}S_{k-1}}{S_{k-1}^2 - S_kS_{k-2}} = R^2
\]

(98)

\[
L_2 = \lim_{k \to \infty} \frac{S_kS_{k-1} - S_{k+1}S_{k-2}}{S_{k-1}^2 - S_kS_{k-2}} = 2R \cos \theta
\]

(99)

This allows us to compute the largest root of the equation, and we can solve for the other roots by dividing the original polynomial by \((x - \alpha_1) \), in the first case, and by \((x - \alpha_1)(x - \alpha_2) \), in the second. In the second case,

\[
R = \sqrt{L_1}
\]

(100)

\[
\cos \theta = \frac{L_2}{2\sqrt{L_1}}
\]

(101)

\[
\sin \theta = \sqrt{1 - (\cos \theta)^2}
\]

(102)

\[
\alpha_1 = R(\cos \theta + i \sin \theta)
\]

(103)

\[
\alpha_2 = R(\cos \theta - i \sin \theta)
\]

(104)

Now we turn to the problem of solving recurrence-equations. We first choose a data-structure to represent such a recurrence. Let

\[
x_i = \sum_{j=1}^{k} B_{i,j}x_{i-j} + Z_i
\]

denote a general \(k \)-level recurrence relation — here \(Z_i \) is a \textit{constant}. We will represent it via a triple \((1, L_{ii}, Z)\), where \(L_i \) is the list of numbers

\[
[1, -B_{i,1}, \ldots, -B_{i,k}]
\]

and \(Z \) is the list \([Z_1, \ldots]\). We will also want to define a few simple operations upon lists of numbers:

1. If \(L_1 \) and \(L_2 \) are two lists of numbers we can define the elementwise sum and difference of these lists \(L_1 + L_2, L_1 - L_2 \) — when one list is shorter than the other it is extended by 0’s on the right.
2. If \(z \) is some real number, we can form the elementwise product of a list, \(L \), by \(z \cdot L \).
3. We can define a right shift-operation on lists. If \(L = [a_1, \ldots, a_m] \) is a list of numbers, then \(\Sigma L = [0, a_1, \ldots, a_m] \).

Given these definitions, we can define an operation \(\star \) on objects \((t, L, Z)\), where \(t \) is an integer \(\geq 1 \), \(L \) is a list of numbers \([1, 0, \ldots, 0, at, \ldots, a_k]\), where there are at least \(t - 1 \) 0’s following the 1 on the left, and \(Z \) is a number. \((t_1, L_1, Z_1) \star (t_2, L_2, Z_2) = (t_1 + t_2, L_1 - \sum_{j=t_1}^{t_1+t_2-1} a_j \Sigma L_2, Z') \), where \(L_1 = [1, 0, \ldots, 0, a_k, \ldots] \), and \(Z' = Z_1 - \sum_{j=t_1}^{t_1+t_2-1} a_j \).

Our algorithm for adding up \(n \) numbers in \(O(\lg n) \)-time implies that this composite can be computed in \(O(\lg n) \)-time on a PRAM, where \(n \) is the size of the lists \(Z_1, Z_2, \) and \(Z' \). This construct represents the operation of substituting
implies that:

is a set of symbols called the alphabet of

A deterministic finite-state automaton (or DFA), is a set of states of

Given the recurrence-relation

is a function

Consider the Bernoulli Method on page 273

This is left as an exercise for the reader.

can be computed in time

\(O(\lg^2(n-k)) \)
on a PRAM-computer, with \(O(kn^2) \) processors.

1. It is only necessary to verify that the composition \((t_1, L_1, Z_1) \times (t_2, L_2, Z_2)\) is associative. This is left as an exercise for the reader.

2. The most general recurrence-relation has each \(x_i \) and \(Z_i \) a linear array and each \(B_i \) a matrix. The result above, and 1.5 imply that these recurrence-relations can be solved in time that is \(O(\lg^3 n) \) — the definitions of the triples \((t, L, Z)\) and the composition-operation \((t_1, L_1, Z_1) \times (t_2, L_2, Z_2)\) must be changed slightly.

Exercises.

1.4. Consider the Bernoulli Method on page 273. Note that \(S_i \) is asymptotic to \(a_1^i \) and so, may either go off to \(\infty \) or to 0 as \(i \to \infty \). How would you deal with situation?

1.3. Deterministic Finite Automata. Next we consider an algorithm for the simulation of a deterministic finite automaton. See chapter 2 of [73] for a detailed treatment. We will only recall a few basic definitions.

Definition 1.10. A deterministic finite-state automaton (or DFA), \(D \), consists of a triple \((A, S, T)\) where:

- \(A \) is a set of symbols called the alphabet of \(D \);
- \(S \) is a set of states of \(D \) with a distinguished Start state, \(S_0 \), and stop states \(\{P_0, \ldots, P_k\} \);
- \(T \) is a function \(T : S \times A \to S \), called the transition function of \(D \).
A string of symbols \{a_0, \ldots, a_n\} taken from the alphabet, \(A\), is called a **string** of the **language** determined by \(D\) if the following procedure results in one of the stop states of \(D\): Let \(s = S_0\), the start state of \(D\). for \(i = 0 \text{ to } n \) do \(s = T(s, a_i)\);

DFA’s are used in many applications that require simple pattern-recognition capability. For instance the lexical analyzer of a compiler is usually an implementation of a suitable DFA. The following are examples of languages determined by DFA’s:

1. All strings of the alphabet \{a, b, c\} whose length is not a multiple of 3.
2. All C comments: i.e. strings of the form ‘/*’ followed by a string that doesn’t contain ‘*/’ followed by ‘*/’.

DFA’s are frequently represented by **transition diagrams** — see figure 6.7.

This is an example of a DFA whose language is the set of string in \(a\) and \(b\) with an **even** number of \(a\)’s and an **even** number of \(b\)’s. The **start** state of this DFA is State 1 and this is also its **one stop state**.

We now present a parallel algorithm for testing a given string to see whether it is in the language determined by a DFA. We assume that the DFA is specified by:

1. a \(k \times t\)-table, \(T\), where \(k\) is the number of states in the DFA (which we assume to be numbered from 0 to \(k - 1\)) and \(t\) is the number of letters in the alphabet. Without loss of generality we assume that the start state is number \(0\);
2. A list of numbers between 0 and \(k - 1\) denoting the stop states of the DFA.

The **idea** of this algorithm is that:

1. each letter, \(a\), of the alphabet can be regarded as a function,
 \[f_a : \{0, \ldots, k - 1\} \rightarrow \{0, \ldots, k - 1\} \] simply define \(f_a = T(\ast, a) \).
2. the operation of **composing functions** is **associative**.

In order to give the formal description of our algorithm we define the following operation:
DEFINITION 1.11. Let \(A \) and \(B \) be two arrays of size \(k \), and whose entries are integers between 0 and \(k - 1 \). Then \(A \ast B \) is defined via: \((A \ast B)_i = B[A[i]] \), for all \(0 \leq i \leq k - 1 \).

Our algorithm is the following:

ALGORITHM 1.12. Given a character-string of length \(n \), \(s = \{c_0, \ldots, c_{n-1}\} \), and given a DFA, \(D \), with \(k \) states and transition function \(T \), the following procedure determines whether \(s \) is in the language recognized by \(D \) in time \(O(\lg n) \) with \(O(kn) \) processors:

1. Associate a linear array \(A(c_j) \) with each character of the string via:
\[A(c_j)_i = T(i, c_j) \]
Each entry of this array is a number from 0 to \(k - 1 \).

2. Now compute \(A = A(c_0) \ast \cdots \ast A(c_j) \). The string \(s \) is in the language recognized by \(D \) if and only if \(A_0 \) is a valid stop state of \(D \).

The composition-operation can clearly be performed in constant time with \(k \) processors. Consequently, the algorithm requires \(O(\lg n) \) with \(O(kn) \) processors.

DFA’s are frequently described in such a way that some states have no transitions on certain characters. If this is the case, simply add an extra “garbage state” to the DFA such that a character that had no transition defined for it in the original DFA is given a transition to this garbage state. All transitions from the garbage state are back to itself, and it is never a valid stop state.

This algorithm could be used to implement the front end of a compiler. DFA’s in such circumstances usually have actions associated with the various stop states and we are usually more interested in these actions than simply recognizing strings as being in the language defined by the DFA.

EXERCISES.

1.5. Write a C* program to recognize the language defined by the DFA in figure 6.7.

1.6. Consider algorithm 1.5 on page 269. Suppose you are only given only \(n / \lg n \) processors (rather than \(n \)). Modify this algorithm so that it performs its computations in \(O(T \lg^2 n) \) time, rather than \(O(T \lg n) \)-time. (So the “price” of using only \(n / \lg n \) processors is a slowdown of the algorithm by a factor of \(O(\lg n) \)).

1.7. Same question as exercise 1 above, but give a version of algorithm 1.5 whose execution time is still \(O(T \lg n) \) — here the constant of proportionality may be larger than before, but growth in time-complexity is no greater than before. Note that this version of algorithm 1.5 gives optimal parallel speedup — the parallel execution time is proportional to the sequential execution time divided by the number of processors. (Hint: look at §5.5 in chapter 2)
1.4. Parallel Interpolation. Now we will discuss an algorithm for the Interpolation Problem for polynomials. This is the problem of finding a degree-$k-1$ polynomial that fits k given points: $(x_0, y_0), \ldots, (x_{k-1}, y_{k-1})$. This is somewhat like what was done in §5 on page 222 with the Newton-Cotes integration formula. The main differences are that

- The values of the x-variable are not evenly spaced.
- The coefficients of the interpolation formula are not precomputed as in the Newton-Cotes formula: they are computed at run-time by the algorithm.

This parallel algorithm is due to E. Eğecioğlu, E. Gallopoulos and Ç. Koç — see [124]. This is an algorithm that might have been placed in chapter 5, but it involves so many parallel prefix computations (à la 1.5 on page 269) that we placed it here. We will look at their parallelization of an interpolation algorithm developed by Isaac Newton.

In order to describe the algorithm, we have to define the concept of divided differences. Suppose we have a table of values of a function $f(x)$ for various different values of x:

```
<table>
<thead>
<tr>
<th>x_0</th>
<th>y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{k-1}</td>
<td>y_{n-1}</td>
</tr>
</tbody>
</table>
```

The first divided differences are defined by:

$$(105) \quad y_{i,i+1} = \frac{y_i - y_{i+1}}{x_i - x_{i+1}}$$

and higher divided differences are defined recursively by the formula

$$(106) \quad y_{i,i+1,\ldots,i+j} = \frac{y_{i,i+1,\ldots,i+j-1} - y_{i+1,\ldots,i+j}}{x_i - x_{i+j}}$$

Newton’s formula for interpolation is

$$(107) \quad f(x) = y_0 + y_{01}(x - x_0) + y_{012}(x - x_0)(x - x_1) + \cdots + y_{012\cdots k-1}(x - x_0)\cdots(x - x_{k-2})$$

We will find a parallel algorithm for computing the numbers $\{y_{01}, \ldots, y_{01\cdots k-1}\}$.

The following result of E. Eğecioğlu, E. Gallopoulos and Ç. Koç allows us to parallelize this formula:

Proposition 1.13. Let $j > 0$. The divided differences in the table above satisfy the formula:

$$(108) \quad y_{0,\ldots,i-1} = \frac{y_0}{(x_0 - x_1)\cdots(x_0 - x_{j-1})} + \frac{y_i}{(x_i - x_1)\cdots(x_i - x_{j-1})(x_i - x_{i+1})} \frac{y_{i-1}}{(x_{i-1} - x_0)\cdots(x_{i-1} - x_{j-2})} + \cdots + \frac{y_{j-1}}{(x_{j-1} - x_0)\cdots(x_{j-1} - x_{j-2})}$$
Proof. We use induction on \(j \). It is straightforward to verify the result when \(j = 2 \). Assuming that

\[
y_0, \ldots, y_{j-2} = y_0 \cdot d(0, 1, \ldots, j-2) + \cdots + y_i \cdot d(i, 0, \ldots, i-1, i+1, \ldots, j-2) + \cdots + y_{j-2} \cdot d(j-1, 0, \ldots, j-3)
\]

where

\[
d(i, 0, \ldots, i-1, i+1, \ldots, j-2) = \frac{1}{(x_i - x_1) \cdots (x_i - x_{i-1}) (x_i - x_{i+1}) (x_i - x_{j-2})}
\]

Now we derive the formula given in the statement of this proposition. We can use direct computation:

\[
y_{0, j-1} = \frac{y_{0, i+1, \ldots, j-2} - y_{1, \ldots, j-1}}{x_0 - x_{j-1}}
\]

Now, plugging the equation above gives

\[
= \frac{1}{x_0 - x_{j-1}} \left\{ y_0 \cdot d(0, 1, \ldots, j-2) + \cdots + y_i \cdot d(i, 0, \ldots, i-1, i+1, \ldots, j-2) + \cdots + y_{j-2} \cdot d(j-1, 0, \ldots, j-2) \right\}
\]

Combining terms with the same factor of \(y_i \) gives and this proves the result. \(\square \)

Our conclusion is a fast parallel algorithm for doing interpolation:

Algorithm 1.14. Suppose we have a table of \(x \) and \(y \)-values of an unknown function:

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(y_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(x_{k-1})</td>
<td>(y_{n-1})</td>
</tr>
</tbody>
</table>

We can perform a degree-\(n-1 \) interpolation to estimate the value of this function at a data-point \(x' \) by the following sequence of steps:

For all \(i \) such that \(0 \leq i \leq n-1 \)

Compute the products \(\{ z_i = (x' - x_0) \cdots (x' - x_i) \} \)

(Use the algorithm described in 1.5 on page 269)

For all \(i \) and \(j \) with \(0 \leq i \leq j \leq n-1 \).
Compute the quantities $d_{(i_0, \ldots, i, i+1, \ldots, i)}$
(This involves n applications of the algorithm in 1.5 on page 269)

for all i with $0 \leq i \leq n - 1$

Compute the divided differences $\{y_{0..i}\}$
(This involves forming linear combinations using the function-values $\{y_i\}$ in the table, and the $\{d_{(i_0, \ldots, i-1, i+1, \ldots, i-1)}\}$ computed earlier.)

Plug the divided differences into equation (107) on page 278 above.

This entire algorithm can be executed in $O(\lg n)$ time using $O(n^2)$ processors on a CREW-SIMD parallel computer.

We need the $O(n^2)$ processors because we must perform $n - 1$ distinct executions of the algorithm in 1.5 on page 269 concurrently. Note that the parallel algorithm is not very numerically stable — it involves forming a large sum of small quantities. The original sequential algorithm is much more stable.

The original paper, [124], of E. Egecioglu, E. Gallopoulos and C. Koç also developed an algorithm for Hermite interpolation as well as Newton interpolation. That algorithm requires the definition of generalized divided differences and is similar to, but more complicated than the algorithm above.

We will conclude this section with an example:

Suppose we have the following table of function-values

<table>
<thead>
<tr>
<th>x_i</th>
<th>y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

This is a table of primes, and we would like to estimate prime number 4.3 (!). We begin by computing the quantities:

- $\left\{\frac{1}{x_0-x_1}, \frac{1}{x_0-x_1}(x_0-x_2), \ldots, \frac{1}{x_0-x_1}(x_0-x_{n-1})\right\}$
- $\left\{\frac{1}{x_1-x_0}, \frac{1}{x_1-x_0}(x_1-x_2), \ldots, \frac{1}{x_1-x_0}(x_1-x_{n-1})\right\}$
- and so on, where $x_j = i + 1$.

We can tabulate these calculations in the following table. Here the entry in the i^{th} row and j^{th} column is $d_{(i_0, \ldots, i-1, i+1, \ldots, j)}$.

...
1. DOUBLING ALGORITHMS

\[
\begin{array}{cccccccc}
-1 & 1/2 & -1/6 & 1/24 & -1/120 & 1/720 & -1/5040 \\
1 & -1 & 1/2 & -1/6 & 1/24 & -1/120 & 1/720 \\
1/2 & 1/2 & -1/2 & 1/4 & -1/12 & 1/48 & -1/240 \\
1/3 & 1/6 & 1/6 & 1/12 & -1/36 & 1/144 \\
1/4 & 1/12 & 1/24 & 1/24 & -1/36 & 1/144 \\
1/5 & 1/20 & 1/60 & 1/120 & 1/120 & -1/240 \\
1/6 & 1/30 & 1/120 & 1/360 & 1/720 & 1/720 & -1/720 \\
\end{array}
\]

Now we can calculate our \(d_{01...k} \) coefficients using 1.13 on page 278 to get

- \(d_{01} = 1 \)
- \(d_{012} = 1/2 \)
- \(d_{0123} = -1/6 \)
- \(d_{01234} = 1/8 \)
- \(d_{012345} = -3/40 \)
- \(d_{0123456} = 23/720 \)

Our approximating polynomial is

\[
f(x) = 2 + (x - 1) + (x - 1)(x - 2)/2 - (x - 1)(x - 2)(x - 3)/6 \\
+ (x - 1)(x - 2)(x - 3)(x - 4)/8 - 3(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)/40 \\
+ 23(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6)/720
\]

and we determine that the “4,3rd prime” is 8.088442663. Lest the reader think we have found a “formula” for prime numbers, it should be pointed out that this function diverges wildly from prime values outside the range of integers from 1 to 7 — see its graph in figure 6.8.

For instance, \(f(8) = 72 \), while the correct 8th prime is 19.

EXERCISES.

1.8. Write a C* program for the Newton Interpolation algorithm.

1.9. Can this algorithm be used to perform numerical integration, as in § 5 (page 222)? What are the problems involved?
One area where a great deal of work has been done in the development of parallel algorithms is that of graph algorithms. Throughout this section $G = (V, E)$ will be assumed to be an undirected graph with vertex set V and edge set E — recall the definitions on page 85. We will also need the following definitions:

Definition 1.15. Let $G = (V, E)$ be a connected graph. Then:

1. G is a tree if removal of any vertex with more than one incident edge disconnects G. See figure 6.9, part a.
2. G is an in-tree if it is a tree, and a directed graph, and there exists one vertex, called the root, with the property that there exists a directed path from every vertex in G to the root. See figure 6.9, part b.
3. G is an out-tree if it is a tree, and a directed graph, and there exists one vertex, called the root, with the property that there exists a directed path from the root to every vertex in G. See figure 6.9, part c.

2. The Euler Tour Algorithm

We will begin with a very simple and ingenious algorithm that is often used as a kind of subroutine to other algorithms. We have already seen an application of this algorithm — see § 3.

The input to this algorithm is an undirected tree. The algorithm requires these edges to be ordered in some way, but makes no additional requirements. The various versions of this algorithm all compute functions of the tree including:

- preorder
- postorder
- inorder
- rank of the vertices.
a. Removal of any interior vertex disconnects this graph

b. An in-tree

c. An out-tree

Figure 6.9. Examples of trees
2. various other functions associated with the graph like distance from the root; number of direct descendants, etc.

In addition we will need to assume that:

1. the edges incident upon each vertex are ordered in some way.
2. each node has at least two children.

Applications of the algorithm may require that the ordering of the edges have some other special properties. For instance, the algorithm in § 3 requires that the edges be ordered in a way that is compatible with the terms in the original expression. Figure 6.10 is a sample tree that we will use in our discussion. We will assume that the root of this tree is the top, and that the edges connecting a vertex with its children are ordered from left to right.

Algorithm 2.1. Euler Tour.

1. Convert the undirected tree into a directed tree, rooted at some vertex. Mark this root-vertex. Now perform $\lg n$ iterations of the following operation:
 - All undirected edges incident upon a marked vertex are directed away from it. Now mark all of the vertices at the other ends of these new directed edges. This is illustrated in figure 6.11.
 - Since the process of directing edges can be done in constant time on a PRAM computer, this entire procedure requires $O(\lg n)$ time. We basically use this step so we can determine the parent of a vertex.
2. Replace each directed edge of this tree by two new directed edges going in opposite directions between the same vertices as the original edge. We get the result in figure 6.12.
3. At each vertex link each directed edge with the next higher directed edge whose direction is compatible with it. For instance, if a directed edge is entering the vertex, link it with one that is leaving the vertex. The result is a linked list of directed edges and vertices. Each vertex of the original tree gives rise to several elements of this linked list. At this point, applications of the Euler Tour technique usually carry out additional operations. In most cases they associate a number with each vertex in the linked list. Figure 6.13 shows the Euler Tour that results — the darkly-shaded disks
Figure 6.11. Converting the input tree into a directed tree
represent the vertices of the Euler Tour and the larger circles containing them represent the corresponding vertices of the original tree.

These steps can clearly be carried out in unit time with a SIMD computer. The result will be a linked list, called the Euler Tour associated with the original tree. What is done next depends upon how we choose to apply this Euler Tour.

We will give some sample applications of the Euler Tour technique:

1. Computation of the ordering of the vertices of the original graph in a preorder-traversal.

As remarked above, each vertex of the original graph appears several times in the Euler Tour: once when the vertex is first encountered during a preorder traversal, and again each time the Euler Tour backtracks to that vertex. In order to compute the preorder numbering of the vertices, we simply modify the procedure for forming the Euler Tour slightly. Suppose v is a vertex of the Euler Tour, and $t(v)$ is the corresponding vertex of the original tree that gives rise to t. Then v is assigned a value of $a(v)$, where

- 1 if v corresponds to a directed edge coming from a parent-vertex;
- 0 otherwise.

Figure 6.14 illustrates this numbering scheme.

We take the list of vertices resulting from breaking the closed path in figure 6.12 at the top vertex (we will assume that vertex 1 is the root of the tree). This results in the sequence:

$$\{(1,1),(2,1),(4,1),(2,0),(5,1),(2,0),
\quad (1,0),(3,1),(1,0),(8,1),(7,1),(6,1),(7,0),
\quad (13,1),(7,0),(8,0),(11,1),(9,1),(10,1),(9,0),
\quad (14,1),(9,0),(11,0),(12,1),(11,0),(8,0),(1,0)\}$$

Now compute the cumulative sum of the second index in this list, and we get the rank of each vertex in a preorder traversal of the original tree. This cumulative sum is easily computed in $O(\lg n)$ time via the List Ranking algorithm (Algorithm 1.8 on page 271).
Figure 6.13. The Euler Tour

Figure 6.14. The preorder-numbered Euler Tour
2. We can also compute an *inorder traversal* of the graph using another variant of this algorithm. We use the following numbering scheme: In this case \(a(v) \) is defined as follows:

- if \(t(v) \) has no children, \(a(v) = 1 \);
- if \(t(v) \) has children, but \(v \) arose as a result of a directed edge entering \(t(v) \) from a parent vertex, \(a(v) = 0 \);
- if \(v \) arose as a result of a directed edge entering \(t(v) \) from a child, and exiting to another child, and it is the lowest-ordered such edge (in the ordering-scheme supplied with the input) then \(a(v) = 1 \). If it is not the lowest-ordered such edge then \(a(v) = 0 \);
- if \(v \) arose as a result of a directed edge entering \(t(v) \) from a child, and exiting to a parent, \(a(v) = 0 \);

Figure 6.15 illustrates this numbering scheme.

Although this version of the algorithm is a little more complicated than the previous one, it still executed in \(O(\lg n) \) time.

See [157] for more information on the Euler Tour Algorithm.

Exercises.

2.1. Write a C* program to implement the Euler Tour Algorithm.

2.2. Give a version of the Euler Tour algorithm that produces the *postfix ordering*.
2.3. Give a version of the Euler Tour algorithm that counts the distance of each vertex from the root.

2.1. Parallel Tree Contractions. This is a very general technique for efficiently performing certain types of computations on trees in which each interior vertex has at least two children. It was developed by Miller and Reif in [116], [117], and [118]. Usually, we start with a rooted tree\(^1\), and want to compute some quantity associated with the vertices of the tree. These quantities must have the property that the value of this quantity at a vertex, \(v\), depends upon the entire subtree whose root is \(v\). In general, the object of the computation using parallel tree contractions, is to compute these quantities for the root of the tree. These quantities might, for instance, be:

- the number of children of \(v\),
- the distance from \(v\) to the closest leaf-vertex, in the subtree rooted at \(v\).

The Parallel Tree-Contraction method consists of the following pruning operation:

Select all vertices of the tree whose immediate children are leaf-vertices. Perform the computation for the selected vertices, and delete their children.

The requirement that each vertex of the tree has at least two immediate children implies that at least half of all of the vertices of the tree are leaf-vertices, at any given time. This means that at least half of the vertices of the tree are deleted in each step, and at most \(O(\lg n)\) pruning operations need be carried out before the entire tree is reduced to its root.

Here is a simple example of parallel tree contraction technique, applied to compute the distance from the root to the nearest leaf:

Algorithm 2.2. Let \(T\) be a rooted tree with \(n\) vertices in which each vertex has at least two and not more than \(c\) children, and suppose a number \(f\) is associated with each vertex. The following algorithm computes distance from the root to the nearest leaf of \(T\) in \(O(\lg n)\)-time on a CREW-PRAM computer with \(O(n)\) processors. We assume that each vertex of \(T\) has a data-item \(d\) associated with it. When the algorithm completes, the value of \(d\) at the root of \(T\) will contain the quantity in question.

```plaintext
for all vertices do in parallel
    \(d \leftarrow 0\)
endfor
while the root has children do in parallel
    Mark all leaf-vertices
    Mark all vertices whose children are leaf-vertices
```

\(^1\)I.e., a tree with some vertex marked as the root.
for each vertex v whose children z_1, \ldots, z_c are leaves
 do in parallel
 $d(v) \leftarrow 1 + \min(d(z_1), \ldots, d(z_c))$
 endfor
Delete the leaf-vertices from T
endwhile

In order to modify this algorithm to compute the distance from the root to the furthest leaf, we would only have to replace the min-function by the max-function.

In order to see that this algorithm works, we use induction on the distance being computed. Clearly, if the root has a child that is a leaf-vertex, the algorithm will compute the correct value — this child will not get pruned until the last step of the algorithm, at which time the algorithm will perform the assignment

$$d(\text{root}) \leftarrow 1$$

If we assume the algorithm works for all trees with the distance from the root to the nearest leaf $\leq k$, it is not hard to see that it is true for trees in which this distance is $k + 1$:

If T' is a tree for which this distance is $k + 1$, let the leaf nearest the root be ℓ, and let r' be the child of the root that has ℓ as its descendant. Then the distance from r' to ℓ is k, and the tree-contraction algorithm will correctly compute the distance from r' to ℓ in the first few iterations (by assumption).

The next iteration will set $d(\text{root})$ to $k + 1$.

Parallel tree contractions have many important applications. The first significant application was to the parallel evaluation of arithmetic expressions. This application is described in some detail in § 3 on page 333 of this book — also see [117] and [58].

In [118] Miller and Reif develop algorithms for determining whether trees are isomorphic, using parallel tree-contractions.

Exercises.

2.4. Give an algorithm for finding the number of subtrees of a tree, using Parallel Tree Contractions.

2.2. Shortest Paths. In this algorithm we will assume that the edges of a graph are weighted. In other words, they have numbers attached to them. You can think of the weight of each edge as its "length" — in many applications of this work, that is exactly what the weights mean. Since each edge of the graph has a
length, it makes sense to speak of the length of a path through the graph. One natural question is whether it is possible to travel through the graph from one vertex to another and, if so, what the shortest path between the vertices is. There is a simple algorithm for finding the lengths of the shortest path and (with a little modification), the paths themselves. We begin with some definitions:

Definition 2.3. Let \(G = (V, E) \) be an undirected graph with \(n \) vertices.

1. The adjacency matrix of \(G \) is defined to be an \(n \times n \) matrix \(A \), such that

 \[
 A_{i,j} = \begin{cases}
 1 & \text{if there is an edge connecting vertex } i \text{ and vertex } j \\
 0 & \text{otherwise}
 \end{cases}
 \]

2. If \(G \) is a directed graph, we define the adjacency matrix by

 \[
 A_{i,j} = \begin{cases}
 1 & \text{if there is an edge from vertex } i \text{ to vertex } j \\
 0 & \text{otherwise}
 \end{cases}
 \]

3. If \(G \) is a weighted graph, the weight matrix of \(G \) is defined by

 \[
 A_{i,j} = \begin{cases}
 0 & \text{if } i = j \\
 w(i,j) & \text{if there is an edge from vertex } i \text{ to vertex } j \\
 \infty & \text{otherwise}
 \end{cases}
 \]

 where \(w(i,j) \) is the weight of the edge connecting vertex \(i \) and \(j \) (if this edge exists).

Note that the diagonal elements of all three of these matrices are 0.

Proposition 2.4. Let \(G \) be a positively weighted graph with \(|V| = n \). There exists an algorithm for the distance between all pairs of vertices of \(G \) that executes in \(O(\lg^2 n) \) time using \(O(n^{2.376}) \) processors.

Incidentally, we call a graph positively weighted if all of the weights are \(\geq 0 \).

Our algorithm involves defining a variant of matrix multiplication that is used for a dynamic-programming solution to the distance problem, i.e.

\[
(A \times B)_{i,j} = \min_k (A_{ik} + B_{kj})
\]

Here we assume the distance matrix \(D \) is set up in such a way that entries corresponding to missing edges are set to \(\infty \) — where \(\infty \) is some number that always compares higher than any other number under consideration. Figure 6.16 shows a weighted graph that we might use. The processor-count of \(O(n^{2.376}) \) is based upon the results of Don Coppersmith Schmuel Winograd in [34], which shows that matrix-multiplication can be done with \(n^{2.376} \) processors. Our exotic matrix multiplication algorithm can be implemented in a similar fashion.

The corresponding distance matrix is:

\[
D = \begin{pmatrix}
0 & 0 & 2 & 1 & \infty & \infty & \infty \\
0 & \infty & 3 & \infty & 1 & \infty \\
2 & \infty & 0 & 1 & \infty & 1 & \infty \\
1 & 3 & 1 & 0 & \infty & 1 & 4 \\
\infty & \infty & \infty & \infty & 0 & \infty & 2 \\
\infty & 1 & 1 & 1 & \infty & 0 & 3 \\
\infty & \infty & \infty & 4 & 2 & 3 & 0
\end{pmatrix}
\]
As remarked above, matrix multiplication in this sense can be done using $O(n^{2.376})$ processors in $O(\lg n)$ steps. Now “square” the distance matrix $\lceil \lg n \rceil$ times.

Here is a sample C* program for carrying out this “dynamic programming” variant of matrix multiplication

```
#include <stdio.h>
#include <values.h>
#include <stdlib.h>

shape[64][128]mats;
void dynamic_programming(int int int:current*, int:current*, int:current*);

void dynamic_programming(int m, int n, int k, int:current*mat1, int:current*mat2, int:current*outmat)
{
    shape[32][32][32]tempsh;
    int:tempsh tempv;
    *outmat = MAXINT;
    with(tempsh)
    {
        bool:tempsh region = (pcoord(0) < m) &
        (pcoord(1) < n)
        & (pcoord(2) < k);
        where(region)
        {
            tempv = [pcoord(0)][pcoord(1)](*mat1) +
            [pcoord(1)][pcoord(2)](*mat2);
            [pcoord(0)][pcoord(2)](*outmat) <?= tempv;
        }
    }
}
```

The number MAXINT is defined in the include-file <values.h>. It is equal to the largest possible integer — we use it as ∞^2. Also note that we have to initialize the *outmat array at MAXINT since the reduction-operation $<?= has the effect

Figure 6.16. Weighted graph

2You should use MAXINT/2, or MAXINT>>1 for ∞ in the entries of the A matrix. This is because the addition-step in the dynamic-programming matrix multiplication algorithm could add MAXINT to another number, resulting in overflow.
of taking the minimum of the initial value of *outmat and the values of tempv. In other words, it has the effect of repeatedly taking min(*outmat, some value in tempv). The remarks on page 124, regarding a practical program for matrix multiplication apply to this dynamic programming algorithm as well.

The proof that this algorithm works is fairly straightforward. Suppose A is the matrix giving the lengths of the edges of a graph and let \(A^k \) be the result of carrying out the dynamic programming form of matrix multiplication \(k \) times. We claim that \(A^k \) gives the length of the shortest paths between pairs of vertices, if those paths have \(\leq k + 1 \) vertices in them. This is clearly true for \(k = 1 \). If it is true for some value of \(k \) it is not hard to prove it for \(A^{k+1} \) — just note that:

1. the shortest path with \(k + 1 \) vertices in it is the concatenation of its first edge, with the shortest path from the end vertex of that edge with \(k \) vertices in it, to the destination;
2. we can find that shortest path by trying every edge coming out of the starting vertex as a possible candidate for its first edge. Then we pick the combination (first edge, shortest path with \(k \) vertices) with the shortest total length. This variant on the algorithm above is called Floyd’s Algorithm.

The second statement basically describes our algorithm for dynamic-programming matrix multiplication. The proof is completed by noting that we don’t have to carry out the matrix-multiplication more than \(n \) times (if \(n \) is the number of vertices in the graph) since no path will have more than \(n \) vertices in it.

Exercises.

2.5. The algorithm for all-pairs shortest paths requires that the edge-weights be nonnegative. What goes wrong if some edge-weights are negative?

2.6. In the context of the preceding problem, how could the results of this section be generalized to graphs for which some edge-weights are negative.

2.7. Does the algorithm for distances between pairs of vertices also work for directed graphs? If not, what goes wrong?

2.3. Connected Components. Another problem for which there is significant interest in parallel algorithms is that of connected components and the closely related problem of minimal spanning trees of graphs.

The first algorithm for connected components was published in 1979. It is due to Hirschberg, Chandra and Sarawate — see [72]. It was designed to run on a CREW-PRAM computer and it executes in \(O(\lg^2 n) \) time using \(O(n^2 / \lg n) \) processors. This algorithm was improved by Willie in his doctoral dissertation so
that it used $O(|V| + |E|)$ processors, where $|V|$ is the number of vertices in a graph, and $|E|$ is the number of edges of the graph in question. It was further improved by Chin, Lam, and Chen in 1982 in [28] to use $O(n^2 / \log^2 n)$ processors.

In 1982 Shiloach and Vishkin published (see [148]) an algorithm for connected components that executes in $O(\log n)$ time using $O(|V| + 2|E|)$ processors. This algorithm is interesting both for its simplicity, and the fact that it requires the parallel computer to be a CRCW-PRAM machine.

2.3.1. Algorithm for a CREW Computer. We will discuss a variation on the algorithm of Chin, Lam, and Chen because of its simplicity and the fact that it can be easily modified to solve other graph-theoretic problems, such as that of minimal spanning trees.

Component numbers are equal to the minimum of the vertex numbers over the component.

We regard the vertices of the graph as being partitioned into collections called “super-vertices”. In the beginning of the algorithm, each vertex of the graph is regarded as a super-vertex itself. In each phase of the algorithm, each super-vertex is merged with at least one other super-vertex to which it is connected by an edge. Since this procedure halves (at least) the number of super-vertices in each phase of the algorithm, the total number of phases that are required is $\leq \log n$. We keep track of these super-vertices by means of an array called D. If v is some vertex of the graph, the value of $D(v)$ records the number of the super-vertex containing v. Essentially, the number of a super-vertex is equal to the smallest vertex number that occurs within that super vertex — i.e., if a super-vertex contains vertices $\{4, 7, 12, 25\}$, then the number of this super-vertex is 4.

At the end of the algorithm $D(i)$ is the number of the lowest numbered vertex that can be reached via a path from vertex i.

Algorithm 2.5. Connected Components.

Input: A graph G with $|V| = n$ described by an $n \times n$ adjacency matrix $A(i, j)$.

Output: A linear array $D(i)$, where $D(i)$ is equal to the component number of the component that contains vertex i.

Auxiliary memory: One-dimensional arrays C, Flag, and S, each with n components.

1. Initialization-step:
 - for all $i, 0 \leq i < n$ do in parallel
 - $D(i) \leftarrow i$
 - $Flag(i) \leftarrow 1$
 endfor

 The remainder of the algorithm consists in performing do steps 2 through $8 \log n$ times:

2. a. Construct the set S: $S \leftarrow \{i | Flag(i) = 1\}$.
 b. **Selection.** All vertices record the number of the lowest-numbered neighbor in a parallel variable named C:
 - for all pairs $(i, j), 0 \leq i, j < n$ and $j \in S$ do in parallel
 - $C(i) \leftarrow \min\{j | A_{i,j} = 1\}$
 endfor
 - if $A_{i,j} = 0$ for all j, then set $C(i) \leftarrow i$
3. Isolated super-vertices are eliminated. These are super-vertices for which no neighbors were found in the previous step. All computations are now complete for these super-vertices, so we set their flag to zero to prevent them from being considered in future steps.

\[
\text{for all } i \in S \text{ do in parallel} \\
\quad \text{if } C(i) = i, \text{ then Flag}(i) \leftarrow 0
\]

4. At the end of the previous step the value \(C(i) \) was equal to the smallest super-vertex to which super-vertex \(i \) is adjacent. We set the super-vertex number of \(i \) equal to this.

\[
\text{for all } i \in S, \text{ do in parallel} \\
\quad D(i) \leftarrow C(i)
\]

5. **Consolidation.** One potential problem arises at this point. The super-vertices might no longer be well-defined. One basic requirement is that all vertices within the same super-vertex (set) have the same super-vertex number. We have now updated these super-vertex numbers so they are equal to the number of some neighboring super-vertex. This may destroy the consistency requirement, because that super-vertex may have been assigned to some third super-vertex. We essentially want \(D(D(i)) \) to be the same as \(D(i) \) for all \(i \).

We restore consistency to the definition of super-vertices in the present step — we perform basically a kind of doubling or “folding” operation. This operation never needs to be performed more than \(\lg n \) times, since the length of any chain of super-vertex pointers is halved in each step. We will do this by operating on the \(C \) array, so that a future assignment of \(C \) to \(D \) will create well-defined super-vertices.

\[
\text{for } i \leftarrow 0 \text{ until } i > \lg n \text{ do} \\
\quad \text{for all } j \in S \text{ do in parallel} \\
\quad \quad C(j) \leftarrow C(C(j))
\]

6. **Update super-vertex numbers.**

a. Now we update \(D \) array again. We only want to update it if the new super-vertex values are smaller than the current ones:

\[
\text{for all } i \in S \text{ do in parallel} \\
\quad D(i) \leftarrow \min(C(i), D(C(i)))
\]

This corrects a problem that might have been introduced in step 4 above — if \(i \) happens to be the vertex whose number is the same as its super-vertex number (i.e., its number is a minimum among all of the vertices in its super-vertex), then we don’t want its \(D \)-value to change in this iteration of the algorithm. Unfortunately, step 4 will have changed its \(D \)-value to be equal to the minimum of the values that occur among the neighbors of vertex \(i \). The present step will correct that.

b. Update \(D \) array for all vertices (i.e., include those \(\not \in \) in the currently-active set). This step is necessary because the activity of the
algorithm is restricted to a subset of all of the vertices of the graph. The present step updates vertices pointing to super-vertices that were newly-merged in the present step:

```plaintext
for all i do in parallel
  D(i) ← D(D(i))
endfor
```

7. Here, we clean up the original adjacency matrix A to make it reflect the merging of super-vertices:

a. This puts an arc from vertex i to new super-vertex j — in other words $A(i, j) ← 1$ if there is an edge between i and a vertex merged into j.

```plaintext
for all i ∈ S do in parallel
  for all j ∈ S and j = D(i) do in parallel
    A(i, j) ← ∨ {A(i, k) | D(k) = j}
  endfor
endfor
```

b. This puts an arc from super-vertex vertex i to super-vertex j if there is an arc to j from a vertex merged into i.

```plaintext
for all j ∈ S such that j = D(i) do in parallel
  for all i ∈ S and i = D(i) do in parallel
    A(i, j) ← ∨ {A(k, j) | D(k) = i}
  endfor
endfor
```

c. Remove diagonal entries:

```plaintext
for all i ∈ S do in parallel
  A(i, i) ← 0
endfor
```

8. One of the ways the algorithm of Chin, Lam and Chen achieves the processor-requirement of only $O(n^2/\lg^2 n)$ is that processors not working on super-vertices are removed from the set of active processors. The original algorithm of Hirschberg, Chandra and Sarawate omits this step.

```plaintext
for all i ∈ S do in parallel
  if D(i) ≠ i then
    Flag(i) ← 0
  endfor
```

As written, and implemented in the most straightforward way, the algorithm above has an execution-time of $O(\lg^2 n)$, using $O(n^2)$ processors. Hirschberg, Chandra and Sarawate achieve a processor-bound of $O(n/\lg n)$ by using a
version of 1.6 on page 270 in the steps that compute minima of neighboring vertex-numbers3. The algorithm of Chin, Lam and Chen in [28] achieves the processor requirement of $O(n \lfloor n / \lg^2 n \rfloor)$ by a much more clever (and complex) application of the same technique. Their algorithm makes explicit use of the fact that the only processors that are involved in each step of the computation are those associated with super-vertices (so the number of such processors decreases in each phase of the algorithm).

Here is an example of this algorithm. We will start with the graph in figure 6.17.

After the initial step of the algorithm, the C-array will contain the number of the smallest vertex neighboring each vertex. We can think of the C-array as defining “pointers”, making each vertex point to its lowest-numbered neighbor. We get the graph in figure 6.18.

Vertices that are lower-numbered than any of their neighbors have no pointers coming out of them — vertex 6, for instance.

3Finding a minimum of quantities is a census operation as mentioned on page 103.
The C-array does not define a partitioning of the graph into components at this stage. In order for the C-array to define a partitioning of the graph into components, it would be necessary for the C-pointer of the vertex representing all vertices in the same partition to be the same. For instance vertex 5 is the target of 13, but couldn’t possibly be the vertex that represents a partition of the graph because vertex 5 points to vertex 1, rather than itself. We must perform the “folding”-operation to make these partition-pointers consistent. The result is the graph in figure 6.19.

The partitioning of the graph is now well-defined and the number of vertices of the graph has been strictly reduced — each vertex of the present graph is a super-vertex, derived from a set of vertices of the original graph. In the next step of the algorithm, the super-vertices will correspond to components of the original graph.

In our C* program we will assume the A-matrix is stored in a parallel variable A in a shape named ‘graph’, and C, D, and Flag are parallel variables stored in a parallel variable in a shape named ‘components’.

Here is a C* program that implements this algorithm:

```c
#include <values.h>
#include <math.h>
#include <stdio.h>
shape [64][128]graph;
shape [8192]components;
#define N 10
int:graph A, temp;
int:components C, D, Flag,in_S;
int i, j;
FILE *graph_file;
void
main()
{
  int L = (int) (log((float) N) / log(2.0) + 1);

  /* Adjacency matrix stored in a text file. */
  graph_file = fopen("gfile", "r");
  for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
      int temp;
```
fscanf(graph_file, "%d", &temp);
[i][j]A = temp;
}

/* Initialize super-vertex array so that each
* vertex starts out being a super vertex. */
with (components)
{
D = pcoord(0);
Flag=1;
}

/* Main loop for the algorithm. */
for (i = 0; i <= L; i++)
with (graph)
where ((pcoord(0) < N)
& (pcoord(1) < N))
{
int i;

/* This is step 2. */
with(components) in_S=Flag;

/* Locate smallest-numbered neighboring super vertex: */
with(components)
where ([pcoord(0)]in_S == 1)
C=pcoord(0);

where ([pcoord(0)]in_S == 1)
where (A == 1)
{
[pcoord(0)]C <?= pcoord(1);
}

/* This is step 3 */
where ([pcoord(0)]in_S == 1)
where ([pcoord(0)]C == pcoord(0))
[pcoord(0)]Flag = 0;

/* This is step 4 */
with(components)
where (in_S == 1)
D=C;

/* This is step 5 */
for (i = 0; i <= L; i++)
A few comments are in order here:
In step 7a, the original algorithm, 2.5 on page 294 does
for all \(i \in S \) do in parallel
\[A(i, j) \leftarrow \bigvee_{k \in S} \{ A(i, k) \mid D(k) = j \} \]
endfor
endfor

This pseudocode in step 7a of 2.5 states that we are to compute the OR of all
of the vertices in each super-vertex and send it to the vertex that represents it.

The C* language doesn’t lend itself to an explicit implementation of this
operation. Instead, we implement an operation that is logically equivalent to it:
2. THE EULER TOUR ALGORITHM

where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)
[pcoord(1)]D[pcoord(1)]A | = A;

Here, we are using a census-operation in C* (see page 103) to route information in selected portions of the A-array to vertices numbered by D-array values (which represent the super-vertices), and to combine these values by a logical OR operation.

2.3.2. Algorithm for a CRCW computer. Now we will discuss a faster algorithm for connected components, that takes advantage of concurrent-write operations available on a CRCW-PRAM computer. It is due to Shiloach and Vishkin and it runs in \(O(\log n)\) time using \(|V| + 2|E|\) processors, where \(|V|\) is the number of vertices in the graph and \(|E|\) is the number of edges. It also takes advantage of a changed format of the input data. The input graph of this algorithm is represented as a list of edges rather than an adjacency-matrix.

ALGORITHM 2.6. The following algorithm computes the set of connected components of a graph \(G = (V, E)\), where \(|V| = n\). The algorithm executes in \(O(\log n)\) steps using \(O(|V| + 2|E|)\) processors.

Input: A graph, \(G = (V, E)\), represented as a list of edges \{(v_1, v_2), (v_2, v_1), \ldots\}. Here each edge of \(G\) occurs twice — once for each ordering of the end-vertices. Assign one processor to each vertex, and to each entry in the edge-list.

Output: A 1-dimensional array, \(D_{2\log n}\), with \(n\) elements. For each vertex \(i\), \(D(i)\) is the number of the component containing \(i\). Unlike the output produced by the Chin, Lam, Chen algorithm (2.5 on page 294), the value \(D(i)\) produced by this algorithm might \(not\) be the smallest numbered vertex in its component. We can only conclude (when the algorithm is finished) that vertices \(i\) and \(j\) are in the same component if and only if \(D(i) = D(j)\).

Auxiliary memory: One dimensional arrays \(Q\), and \(D_i\) each of which has \(n\) elements. Here \(i\) runs from 0 to \(2\log n\). Scalar variables \(s\), and \(s'\).

Initialization. Set \(D_0(i) \leftarrow i\), \(Q(i) \leftarrow 0\), for all vertices \(i \in V\). Set \(s \leftarrow 1\), and \(s' \leftarrow 1\). Store the \(D\)-array in the first \(n\) processors, where \(n = |V|\). Store the list of edges in the next \(2m\) processors, where \(m = |E|\).

0. while \(s = s'\) do in parallel:
 1. Shortcutting:
 for \(i, 1 \leq i \leq n\) do in parallel
 \(D_s(i) \leftarrow D_{s-1}(D_{s-1}(i))\)
 if \(D_s(i) \neq D_{s-1}(i)\)
 \(Q(D(i)) \leftarrow s\)
 endfor

 This is like one iteration of step 5 of algorithm 2.5 — see page 295. We will use the \(Q\) array to keep track of whether an array entry was changed in a given step. When none of the array entries are changed, the algorithm is complete.

 2. Tree-Hooking
 for all processors holding an edge \((u, v)\) do in parallel
 then if \(D_s(u) = D_{s-1}(u)\)

then if \(D_s(v) < D_s(u) \)
then \(D_s(D_s(u)) \leftarrow D_s(v) \)
\(Q(D_s(v)) \leftarrow s \)
endfor

This is essentially the **merging** phase of algorithm 2.5. Note that:

1. the present algorithm “pipelines” consolidation and merging, since we only perform one step of the consolidation-phase (rather than \(\lg n \) steps) each time we perform this step.

2. Only processors that point to super-vertex representatives participate in this step. This limitation is imposed precisely because the consolidation and merging phases are pipelined. Since we have only performed a single consolidation step, not all vertices are properly consolidated at this time. We do not want to merge vertices that are not consolidated into super-vertices.

If \(D_s(u) \) hasn’t been changed (so it pointed to a representative of the current supervertex), then the processor checks to see whether vertex \(v \) is contained in a smaller-numbered supervertex. If so, it puts \(D_s(u) \) into that supervertex (starting the merge-operation of this supervertex). Many processors carry out this step at the same time — the CRCW property of the hardware enables only one to succeed.

3. **Stagnant Supervertices**

if \(i > n \) and processor \(i \) contains edge \((u, v)\)
then if \(D_s(u) = D_s(D_s(u)) \) and \(Q(D_s(u)) < s \)
then if \(D_s(u) \neq D_s(v) \)
then \(D_s(D_s(u)) \leftarrow D_s(v) \)

These are supervertices that haven’t been changed by the first two steps of this iteration of the algorithm — i.e. they haven’t been hooked onto any other super-vertex, and no other super-vertex has been hooked onto them. (This fact is determined by the test \(Q(D_s(u)) < s \) — \(Q(D_s(u)) \) records the iteration in which the super-vertex containing \(u \) was last updated) The fact that a super-vertex is stagnant implies that:

1. The super-vertex is fully consolidated (so no short-cutting steps are taken).

2. None of the vertices in this super-vertex is adjacent to any lower-numbered super-vertex. It follows that every vertex of this super-vertex is adjacent to either:
 a. Another vertex of the same super-vertex.
 b. Higher numbered super-vertices. This case can never occur in algorithm 2.5 (so that stagnant super-vertices also never occur), because that algorithm always connects super-vertices to their lowest numbered neighbors. In the merging step of the present algorithm, one (random\(^4\)) processor succeeds in updating the \(D \)-array — it might not be the “right” one.

Stagnant super-vertices have numbers that are local minima among their neighbors. The present step arbitrarily merges them with any neighbor.

\(^4\)At least, it is unspecified. However the hardware decides which store-operation succeeds, it has nothing to do with the present algorithm.
4. Second Shortcutting

\[
\text{for } i, 1 \leq i \leq n \text{ do in parallel}
\text{ then } D_s(i) \leftarrow D_s(D_s(i))
\text{ endfor}
\]

This has two effects:
- It performs a further consolidation of non-stagnant super-vertices.
- It completely consolidates stagnant super-vertices that were merged in the previous step. This is due to the definition of a stagnant super-vertex, which implies that it is already completely consolidated within itself (i.e., all vertices in it point to the root). Only one consolidation-step is required to incorporate the vertices of this super-vertex into its neighbor.

5. Completion criterion

\[
\text{if } i \leq n \text{ and } Q(i) = s \text{ (for any } i) \then s' \leftarrow s' + 1 \\text{ s } \leftarrow s + 1
\]

We conclude this section with an example.

Example 2.7. We use the graph depicted in figure 6.17 on page 297. Initially \(D(i) \leftarrow i\).

1. The first short-cutting step has no effect.
2. The first tree-hooking step makes the following assignments:
 a. \(D(D(2)) \leftarrow D(1)\);
 b. \(D(D(11)) \leftarrow D(1)\)
 c. \(D(D(5)) \leftarrow D(1)\);
 d. \(
 \begin{cases}
 D(D(13)) \leftarrow D(5) \\
 D(D(13)) \leftarrow D(9)
 \end{cases}
 \)
 — this is a CRCW assignment. We assume that \(D(D(13)) \leftarrow D(9)\) actually takes effect;
 e. \(D(D(10)) \leftarrow D(9);\)
 f. \(
 \begin{cases}
 D(D(8)) \leftarrow D(4) \\
 D(D(8)) \leftarrow D(6)
 \end{cases}
 \)
 — this is a CRCW assignment. We assume that \(D(D(8)) \leftarrow D(4)\) actually takes effect;
 g. \(
 \begin{cases}
 D(D(12)) \leftarrow D(7) \\
 D(D(12)) \leftarrow D(3)
 \end{cases}
 \)
 — this is a CRCW assignment. We assume that \(D(D(12)) \leftarrow D(7)\) actually takes effect;

 The result of this step is depicted in figure 6.20.
3. Vertices 3 and 6 represents supervertices that weren’t changed in any way in the first two steps of the algorithm. The are, consequently, stagnant. The second tree-hooking step hooks them onto neighbors. The result is depicted in figure 6.21.
4. The second consolidation-step combines all of the stagnant vertices into their respective super-vertices to produce the graph in figure 6.22.
5. The next iteration of the algorithm completely processes all of the components of the graph.
Figure 6.20. Result of the Tree-Hooking step of the Shiloach-Vishkin Algorithm

Figure 6.21. Tree-Hooking of Stagnant Vertices

Figure 6.22. Second Short-cutting
2.8. The Connection Machine is a CRCW computer. Program the Shiloach-Vishkin algorithm in C#.

2.9. Modify the Chin-Lam-Chen algorithm to accept its input as a list of edges. This reduces the execution-time of the algorithm somewhat. Does this modification allow the execution-time to become $O(\lg n)$?

2.10. The remark on page 301 says that the D-array in the output produced by the Shiloach-Vishkin algorithm might sometimes not be point to the lowest numbered vertex in a component. Since the Merge-step of this algorithm always merges super-vertices with lower numbered super-vertices, where is this minimality property destroyed?

2.11. Where do we actually use the CRCW property of a computer in the Shiloach-Vishkin algorithm?

2.4. Spanning Trees and Forests. Another interesting problem is that of finding spanning trees of undirected graphs.

Definition 2.8. Let $G = (V, E)$ be a connected graph. A spanning tree of G is a subgraph T such that:
1. All of the vertices of G are in T;
2. T is a tree — i.e. T has no cycles.

If G is not connected, and consists of components $\{G_1, \ldots, G_k\}$, then a spanning forest of G is a set of trees $\{T_1, \ldots, T_k\}$, where T_i is a spanning tree of G_i.

In [139], Carla Savage showed that the connected components algorithm, 2.5 on page 294, actually computes a spanning forest of G.

Whenever a vertex (or super-vertex) of the algorithm is merged with a lower-numbered neighboring vertex (or super-vertex) we select the edge connecting them to be in the spanning tree. It is clear that the set of selected edges will form a subgraph of the original graph that spans it — every vertex (and, in the later stages, every super-vertex) participated in the procedure. It is not quite so clear that the result will be a tree (or forest) — we must show that it has no closed cycles.

We show this by contradiction:

Suppose the set of selected edges (in some phase of the algorithm) has a cycle. Then this cycle has a vertex (or super-vertex) whose numbers is maximal. That vertex can only have a single edge incident upon it since:
- No other vertex will select it;
- It will only select a single other vertex (its minimal neighbor).
This contradicts the assumption that this vertex was in a cycle.

We can modify algorithm 2.5 by replacing certain steps, so that whenever it merges two super-vertices along an edge, it records that edge. The result will be a spanning tree of the graph. We augment the data-structures in that algorithm with four arrays:

- \(\text{Edge}(1,*) \), \(\text{Edge}(2,*) \), where \(\{(\text{Edge}(1,i),\text{Edge}(2,i))|i\text{ such that }D(i)\neq i\} \) is the set of edges of the spanning tree.
- \(B(1,i,j), B(2,i,j) \) record the endpoints of the edge connecting super-vertices \(i \) and \(j \), when those super-vertices get merged. This reflects a subtlety of the spanning-tree problem: Since we have collapsed sets of vertices into super-vertices in each iteration, we need some mechanism for recovering information about the original vertices and edges in the graph. When we merge two super-vertices in our algorithm, we use the \(B \)-arrays to determine which edge in the original graph was used to accomplish this merge.

The execution-time of the present algorithm is, like the connected-components algorithm, equal to \(O(\lg^2 n) \). Like that algorithm, it can be made to use \(O(n^2/\lg n) \) processors, though a clever (and somewhat complicated) application of the Brent Scheduling Principle. The modified algorithm is

Algorithm 2.9. Spanning Forest.

Input: A graph \(G \) with \(|V| = n \) described by an \(n \times n \) adjacency matrix \(A(i,j) \).

Output: A \(2 \times n \) array \(\text{Edge} \), such that \(\text{Edge}(1,i) \) and \(\text{Edge}(2,i) \) are the end-vertices of the edges in a spanning tree.

Auxiliary memory: A one-dimensional arrays \(C \) and \(\text{Flag} \), each with \(n \) elements. A \(2 \times n \times n \) array \(B \).

1. Initialization.
 a.

 for all \(i, 0 \leq i < n - 1 \) do in parallel

 \(D(i) \leftarrow i \)
 \(\text{Flag}(i) \leftarrow 1 \)
 \(\text{Edge}(1,i) \leftarrow 0 \)
 \(\text{Edge}(2,i) \leftarrow 0 \)

 endfor

 b. We initialize the \(B \)-arrays. \(B(1,i,j) \) and \(B(2,i,j) \) will represent the end-vertices that will connect super-vertices \(i \) and \(j \).

 for all \(i,j, 0 \leq i,j \leq n - 1 \) do in parallel

 \(B(1,i,j) \leftarrow i \)
 \(B(2,i,j) \leftarrow j \)

 endfor

The remainder of the algorithm consists in

do steps 2 through 9 \(\lg n \) times:

Construct the set \(S: S \leftarrow \{i|\text{Flag}(i) = 1\} \).

2. Selection. As in algorithm 2.5, we choose the lowest-numbered super-vertex, \(f_0 \), adjacent to super-vertex \(i \). We record the edge involved in \(\text{Edge}(1,i) \) and \(\text{Edge}(2,i) \). It is necessary to determine which actual edge
is used to connect these super-vertices, since the numbers i and j are only super-vertex numbers. We use the B-arrays for this.

for all $i \in S$ do in parallel
 Choose j_0 such that $j_0 = \min\{j | A(i, j) = 1; j \in S\}$
 if none then $j_0 \leftarrow j$
 $C(i) \leftarrow j_0$
 Edge$(1, i) \leftarrow B(1, i, j_0)$
 Edge$(2, i) \leftarrow B(2, i, j_0)$
endfor

for all i such that $i \in S$ do in parallel
 if $C(i) = i$, then Flag$(i) \leftarrow 0$

4. Update D.

for all $i \in S$, do in parallel
 $D(i) \leftarrow C(i)$
endfor

5. Consolidation.

for $i \leftarrow 0$ until $i > \log n$
 $j \in S$ do in parallel
 $C(j) \leftarrow C(C(j))$
endfor

6. Final update.

a. for all $i \in S$ do in parallel
 $D(i) \leftarrow \min(C(i), D(C(i)))$
endfor

b. Propagation of final update to previous phase.

for all i do in parallel
 $D(i) \leftarrow D(D(i))$
endfor

7. Update the incidence-matrix and B-arrays.

a. We update the A-array, as in algorithm 2.5. We must also update the B-arrays to keep track of which actual vertices in the original graph will be adjacent to vertices in other super-vertices. We make use of the existing B-arrays in this procedure. This step locates, for each vertex i, the super-vertex j that contains a vertex j_0 adjacent to i. We also record, in the B-arrays, the edge that is used.

for all $i \in S$ do in parallel
 for all $j \in S$ such that $j = D(j)$ do in parallel
 Choose $j_0 \in S$ such that $D(j_0) = j$ AND $A(i, j_0) = 1$
 if none then $j_0 \leftarrow j$
 endfor
endfor

$A(i, j) \leftarrow A(i, j_0)$
$B(1, i, j) \leftarrow B(1, i, j_0)$
$B(2, i, j) \leftarrow B(2, i, j_0)$
b. This step locates, for each super-vertex j, the super-vertex i that contains a vertex i_0 adjacent to j. We make explicit use of the results of the previous step. This step completes the merge of the two super-vertices. The A-array now reflects adjacency of the two super-vertices (in the last step we had vertices of one super-vertex being adjacent to the other super-vertex). The B-arrays for the pair of super-vertices now contain the edges found in the previous step.

```plaintext
for all $j \in S$ such that $j = D(j)$ do in parallel
    for all $i \in S$ such that $i = D(i)$ do in parallel
        if none
            $i_0 \leftarrow i$
        endif
    endfor
    $A(i, j) \leftarrow A(i_0, j)$
    $B(1, i, j) \leftarrow B(1, i_0, j)$
    $B(2, i, j) \leftarrow B(2, i_0, j)$
endfor

c.
for all $i \in S$ do in parallel
    $A(i, i) \leftarrow 0$
endfor
```

8. Select only current super-vertices for remaining phases of the algorithm.

```plaintext
for all $i \in S$ do in parallel
    if $D(i) \neq i$
        Flag($i$) \leftarrow 0
    endif
endfor
```


```plaintext
for all $i, 0 \leq i \leq n - 1$ do in parallel
    if $i \neq D(i)$ then output
        (Edge$(1, i), \text{Edge}(2, i))$
    endif
endfor
```

The handling of the B-arrays represents one of the added subtleties of the present algorithm over the algorithm for connected components. Because of this, we will give a detailed example:

Example 2.10. We start with the graph depicted in figure 6.23. Its incidence matrix is:

$$A = \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}$$

Now we run the algorithm. At the start of phase 1 we have:

- $B(1, i, j) = i, B(2, i, j) = j$, for $1 \leq i, j \leq 8$;
- $\text{Flag}(i) = 1$, for $1 \leq i \leq 8$;
2. THE EULER TOUR ALGORITHM

Figure 6.23.

- $\text{Edge}(1, i) = \text{Edge}(2, i) = 0$ for $1 \leq i \leq 8$;
- $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$;

Step 2 sets the C-array and updates the Edge(1, *) and Edge(2, *) arrays:

\[
C = \begin{pmatrix}
3 & 5 \\
1 & 1 \\
2 & 3 \\
5 & 2
\end{pmatrix}, \quad \text{Edge}(1, \ast) = \begin{pmatrix}
1 & 2 \\
4 & 5 \\
6 & 7 \\
8 & 5
\end{pmatrix} \quad \text{and} \quad \text{Edge}(1, \ast) = \begin{pmatrix}
3 & 5 \\
1 & 1 \\
2 & 3 \\
5 & 2
\end{pmatrix}
\]

In step 4 we perform the assignment $D \leftarrow C$, and in step 5 we consolidate the C-array. The outcome of this step is:

\[
D = \begin{pmatrix}
3 & 5 \\
1 & 1 \\
2 & 3 \\
5 & 2
\end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix}
1 & 2 \\
4 & 5 \\
6 & 7 \\
8 & 5
\end{pmatrix}
\]

In step 6 we perform the final update of the D-array to get:

\[
D = \begin{pmatrix}
1 & 2 \\
1 & 1 \\
1 & 2 \\
2 & 2
\end{pmatrix}
\]

Note that the construction of the spanning tree is not yet complete — we have two supervertices (numbered 1 and 2), as depicted in figure 6.24, and spanning-trees of each of these super-vertices.
Now we update the incidence matrix and the B arrays, in step 7. Part a:

- $i = 1$ No change.
- $i = 2$ No change.
- $i = 3$ When $j = 1$ there is no change, but when $j = 2$, we get

 - $j_0 = 5$;
 - $B(1,3,2) \leftarrow 3$;
 - $B(2,3,2) \leftarrow B(2,3,5) = 5$.

- $i = 5$ When $j = 2$ there is no change, but when $j = 1$, we get

 - $j_0 = 3$;
 - $B(1,5,1) \leftarrow 5$;
 - $B(2,5,1) \leftarrow B(2,5,3) = 3$.

Note that the updating of the arrays is not yet complete. We know that vertex 3 is adjacent to super-vertex 1, but we don’t know that super-vertices 1 and 2 are adjacent.

The next phase of the algorithm completes the spanning tree by adding edge $(3,5) = (B(1,1,2), B(2,1,2))$ to it.

Part b:

- $j = 1$ If $i = 2$ we get $i_0 = 5$ and

 - $A(2,1) = 1$;
 - $B(1,2,1) = 5$;
 - $B(2,2,1) = 3$.

- $j = 2$ If $1 = 2$ we get $i_0 = 3$ and

 - $A(1,2) = 1$;
 - $B(1,1,2) = 3$;
 - $B(2,1,2) = 5$.

The next iteration of this algorithm merges the two super-vertices 1 and 2 and completes the spanning tree by adding edge $(B(1,1,2), B(2,1,2)) = (3,5)$.

Exercises.
2.12. In step 7 the updating of the A-matrix and the B-matrices is done in two steps because the algorithm must be able to run on a CREW computer. Could this operation be simplified if we had a CRCW computer?

2.13. Is it possible to convert the Shiloach-Vishkin algorithm (2.6 on page 301) for connected components into an algorithm for a spanning-tree that runs in $O(\lg n)$ time on a CRCW computer? If so, what has to be changed?

2.4.1. An algorithm for an inverted spanning forest. The algorithm above can be modified to give an algorithm for an inverted spanning forest of the graph in question. This is a spanning tree of each component of a graph that is a directed tree, with the edges of the tree pointing toward the root. There are a number of applications for an inverted spanning forest of an undirected graph. We will be interested in the application to computing a cycle-basis for a graph in section 2.6 on page 327. A cycle-basis can be used to determine and enumerate the closed cycles of a graph.

Algorithm 2.9 on page 306 almost accomplishes this: it finds directed edges that point to the vertex representing a super-vertex. The problem with this algorithm is that, when two super-vertices are merged, the vertices that get joined by the merge-operation may not be the parents of their respective sub-spanning trees. Consequently, the directions of the edges are not compatible, and we don’t get a directed spanning tree of the new super-vertex that is formed — see figure 6.25. The two super-vertices in this figure cannot be merged along the indicated edge in such a way that that the directionality of the subtrees are properly respected. The solution to this problem is to reverse the directions of the edges connecting one root to a vertex where the merge-operation is taking effect.

Several steps are involved. Suppose we want to merge super-vertex 1 with super-vertex 2 in such a way that super-vertex 1 becomes a subset of super-vertex 2. Suppose, in addition, that this merging operation takes place along an edge (a, b). We must find the path in super-vertex 1 that connects vertex a with the
A survey of symbolic algorithms

Super-vertex 1
Super-vertex 2

Figure 6.26. Directed spanning tree on merged super-vertices

representative of this super-vertex, \(r_1 \). Then we reverse the directions of the edges along this path — and we obtain the result shown in 6.26.

In order to carry out this operation we must have an algorithm for computing the path from \(a \) to \(r_1 \). We have an in-tree (see 1.15 on page 282 for the definition) on the super-vertex represented by \(r_1 \) — we only need to follow the directed edges to their target.

We will want to regard these directed edges as defining a function on the vertices in this super-vertex. The value of this function on any vertex, \(v \), is simply the vertex that is at the other end of unique directed edge containing \(v \). This is simpler than it sounds — the directed edges are given by the arrays \((\text{Edge}(1, i), \text{Edge}(2, i))\) in algorithm 2.17 on page 322. We define \(f(\text{Edge}(1, i)) = \text{Edge}(2, i) \).

The path from \(a \) to \(r_1 \) is nothing but the sequence of vertices that result from repeated iteration of \(f \): \(\{a, f(a), f(f(a)), \ldots, f(k)(a)\} \). Having computed \(f \) itself, we can compute the result of repeatedly iterating \(f \) in \(O(\lg n) \) time by a cyclic-reduction type of algorithm like 1.5 on page 269. We get the following algorithm for computing paths from vertices in an in-tree (defined in 1.15 on page 282) to its root:

Algorithm 2.11. Suppose \(T \) is an in-tree with root \(r \) and let \(f \), be the function that maps a vertex to its successor in \(T \). Then, given any vertex \(a \) in the super-vertex\(^5\) corresponding to \(f \), we can compute the sequence \(\{a, f(a), f(f(a)), \ldots, f(k)(a)\} \) by the following procedure:

```plaintext
for all \( i \) such that \( 1 \leq i \leq n \) do in parallel
  \( f^0(i) \leftarrow i, f^1(i) \leftarrow f(i) \)
  for \( t \leftarrow 0 \) to \( \lg(n - 1) - 1 \) do
    for \( s \) such that \( 1 \leq s \leq 2^t \) and \( i \) such that \( 1 \leq i \leq n \) do in parallel
      \( f^{2^t+s}(i) \leftarrow f^{2^t}(f^s(i)) \)
  endfor
endfor
```

We will use the notation \(\hat{f} \) to denote the table that results from this procedure. This can be regarded as a function of two variables: \(\hat{f}(v, i) = f^i(v) \).

\(^5\)Recall that \(f \) is a directed spanning-tree defined on a super-vertex of the original graph.
We are now in a position to give an algorithm for finding an inverted spanning forest of a graph. We basically perform the steps of the spanning-tree algorithm, 2.9 on page 306, and in each iteration of the main loop:

Each super-vertex is equipped with an inverted spanning tree of itself (i.e., as a subgraph of the main graph). Whenever we merge two super-vertices, one of the super-vertices (called the subordinate one) gets merged into the other (namely, the lower numbered one). We perform the following additional steps (beyond what the original spanning-tree algorithm does):

1. We determine which vertex, v, of the subordinate super-vertex is attached to the other. This is a matter of keeping track of the edge being used to join the super-vertices.
2. We compute a path, p, from v in the inverted spanning tree of its super-vertex, to its root. We use algorithm 2.11 above.
3. We reverse the direction of the edges along this path.

This amounts to modifying several steps of algorithm 2.9 and results in an algorithm that requires $O(\lg^2 n)$ time and uses $O(n^2 / \lg n)$ processors. The step in which we apply algorithm 2.11 can be done in $O(\lg n)$-time using $O(n \ceil{n / \lg n})$ processors — it, consequently, dominates the execution-time or the processor-count of the algorithm. In [158], Tsin and Chin present a fairly complicated algorithm for an inverted spanning forest that is a variation upon the present one, but only requires $O(n^2 / \lg^2 n)$ processors. Our algorithm for an inverted spanning forest is thus:

Algorithm 2.12. Inverted Spanning Forest.

Input: A graph G with $|V| = n$ described by an $n \times n$ adjacency matrix $A(i, j)$.

Output: A function, f, such that for all vertices, $v \in V$, $f(v)$ is the successor of v in an inverted spanning tree of G.

Auxiliary memory: A one-dimensional arrays C, Flag, and \hat{f}, each with n elements. A $2 \times n \times n$ array B.

1. Initialization.
 a.
 for all $i, 0 \leq i < n - 1$ do in parallel
 \begin{align*}
 D(i) & \leftarrow i \\
 \text{Flag}(i) & \leftarrow 1 \\
 f(i) & \leftarrow i
 \end{align*}
 endfor
 b. We initialize the B-arrays. $B(1, i, j)$ and $B(2, i, j)$ will represent the end-vertices that will connect super-vertices i and j.
 for all $i, j, 0 \leq i, j \leq n - 1$ do in parallel
 \begin{align*}
 B(1, i, j) & \leftarrow i \\
 B(2, i, j) & \leftarrow j
 \end{align*}
 endfor
 The remainder of the algorithm consists in
do steps 2 through $8 \lg n$ times:
 Construct the set S: $S \leftarrow \{i | \text{Flag}(i) = 1\}$.
2. Selection. As in algorithm 2.5, we choose the lowest-numbered super-vertex, j_0, adjacent to super-vertex i. We record the edge involved in the
f-function. It is necessary to determine which actual edge is used to connect these super-vertices, since the numbers i and j are only super-vertex numbers. We use the B-arrays for this.

a.

for all i ∈ S do in parallel
 Choose j₀ such that j₀ = \min\{j|A(i,j) = 1; j ∈ S\}
 if none then j₀ ← j
 C(i) ← j₀
 if (D(B(1,i,j₀) = D(i)) then
 f(B(1,i,j₀)) ← B(2,i,j₀)
endfor

b. In this step we compute \(\hat{f} \), using algorithm 2.11.

\[\hat{f}(1,*) \leftarrow f \]

for i ← 1 to \(\lg(n - 1) - 1 \) do
 for j₁, 1 ≤ j ≤ 2^i do in parallel
 \(\hat{f}(2^i + j,*) \leftarrow \hat{f}(2^i,*) \circ \hat{f}(j,*) \)
 endfor
endfor

c. Now we compute the lengths of the paths connecting vertices to the roots of their respective super-vertices. We do this by performing a binary search on the sequence \(\hat{f}(j,i) \) for each vertex i

for j, 1 ≤ j ≤ n do in parallel
 Depth(i) ← \min\{j|\hat{f}(j,i) = D(i)\}
endfor

d. Step 2a above adjoined a new edge, e, to the spanning tree. This edge connected two super-vertices, i and j₀, where super-vertex i is being incorporated into super-vertex j₀. Now we reverse the edges of the path that from the end of e that lies in super-vertex i to vertex i. The end of e that lies in super-vertex i is numbered \(B(1,i,j₀) \).

for k, 1 ≤ k ≤ Depth(B(1,i,j₀)) do in parallel
 temp1(i) ← B(1,i,j₀)
 temp2(i) ← f(temp1(i))
endfor

for k, 1 ≤ k ≤ Depth(B(1,i,j₀)) do in parallel
 f(temp2(i)) ← temp1(i)
endfor

for all i such that i ∈ S do in parallel
 if C(i) = i, then Flag(i) ← 0
endfor

4. Update D.

for i ∈ S, do in parallel
 D(i) ← C(i)
endfor

5. Consolidation.

for i ← 0 until i > \lg n
2. THE EULER TOUR ALGORITHM

\[j \in S \text{ do in parallel} \]
\[C(j) \leftarrow C(C(j)) \]
\[\text{endfor} \]
\[\text{endfor} \]

6. Final update.
 a. for \(i \in S \) do in parallel
 \[D(i) \leftarrow \min(C(i), D(C(i))) \]
 \[\text{endfor} \]
 b. Propagation of final update to previous phase.
 for all \(i \) do in parallel
 \[D(i) \leftarrow D(D(i)) \]
 \[\text{endfor} \]

7. Update the incidence-matrix and \(B \)-arrays.
 a. for all \(i \in S \) do in parallel
 for all \(j \in S \) such that \(j = D(j) \) do in parallel
 Choose \(j_0 \in S \) such that \(D(j_0) = j \) AND \(A(i, j_0) = 1 \)
 if none then \(j_0 \leftarrow j \)
 \[A(i, j) \leftarrow A(i, j_0) \]
 \[B(1, i, j) \leftarrow B(1, i, j_0) \]
 \[B(2, i, j) \leftarrow B(2, i, j_0) \]
 \[\text{endfor} \]
 b. for all \(j \in S \) such that \(j = D(j) \) do in parallel
 for all \(i \in S \) such that \(i = D(i) \) do in parallel
 Choose \(i_0 \in S \) such that \(D(i_0) = i \) AND \(A(i_0, j) = 1 \)
 if none then \(i_0 \leftarrow i \)
 \[A(i, j) \leftarrow A(i_0, j) \]
 \[B(1, i, j) \leftarrow B(1, i_0, j) \]
 \[B(2, i, j) \leftarrow B(2, i_0, j) \]
 \[\text{endfor} \]
 c. for all \(i \in S \) do in parallel
 \[A(i, i) \leftarrow 0 \]
 \[\text{endfor} \]

8. Select only current super-vertices for remaining phases of the algorithm.
 for all \(i \in S \) do in parallel
 if \(D(i) \neq i \) then
 \[\text{Flag}(i) \leftarrow 0 \]
 \[\text{endfor} \]

2.5. Minimal Spanning Trees and Forests. If \(G \) is a weighted graph — i.e. there exists a weight function \(w : E \rightarrow \mathbb{R} \), then a minimal spanning tree is a spanning tree such that the sum of the weights of the edges is a minimum (over all possible spanning trees).
1. We will assume, for the time being, that the weights are all positive.

2. Minimal spanning trees have many applications. Besides the obvious ones in network theory there are applications to problems like the traveling salesman problem, the problem of determining cycles in a graph, etc.

We will briefly discuss some of these applications:

DEFINITION 2.13. Let \(\{c_1, \ldots, c_n\} \) be \(n \) points on a plane. A minimal tour of these points is a closed path that passes through all of them, and which has the shortest length of all possible such paths.

1. Given \(n \) points on a plane, the problem of computing a minimal tour is well-known to be NP-complete. This means that there is probably no polynomial-time algorithm for solving it. See [57] as a general reference for NP-completeness.

2. In the original traveling salesman problem, the points \(\{c_1, \ldots, c_n\} \) represented cities and the idea was that a salesman must visit each of these cities at least once. A solution to this problem would represent a travel plan that would have the least cost. Solutions to this problem have obvious applications to general problems of routing utilities, etc.

There do exist algorithms for finding an approximate solution to this problem. One such algorithm makes use of minimal spanning trees.

Suppose we are given \(n \) points \(\{c_1, \ldots, c_n\} \) on a plane (we might be given the coordinates of these points). Form the complete graph on these points — recall that a complete graph on a set of vertices is a graph with edges connecting every pair of vertices — see page 86. This means the complete graph on \(n \) vertices has exactly \(\binom{n}{2} = n(n-1)/2 \) edges. Now assign a weight to each edge of this complete graph equal to the distance between the “cities” at its ends. We will call this weighted complete graph the TSP graph associated with the given traveling salesman problem.

PROPOSITION 2.14. The total weight of the minimal spanning tree of the TSP graph of some traveling salesman problem is \(\leq \) the total distance of the minimal tour of that traveling salesman problem.

PROOF. If we delete one edge from the minimal tour, we get a spanning tree of the complete graph on the \(n \) cities. The weight of this spanning tree must be \(\leq \) the weight of the corresponding minimal spanning tree. \(\square \)

Note that we can get a kind of tour of the \(n \) cities by simply tracing over the minimal spanning tree of the TSP graph — where we traverse each edge twice. Although this tour isn’t minimal the proposition above immediately implies that:

PROPOSITION 2.15. The weight of the tour of the \(n \) cities obtained from a minimal spanning tree by the procedure described above is \(\leq 2W \), where \(W \) is the weight of a minimal tour.

This implies that the tour obtained from a minimal spanning tree is, at least, not worse than twice as bad as an optimal tour. If you don’t like the idea of traversing some edges twice, you can jump directly from one city to the next unvisited city. The triangle inequality implies that this doesn’t increase the total length of the tour.

There is a well-known algorithm for computing minimal spanning trees called Borůvka Borůvka’s Algorithm. It is commonly known as Soullin’s Algorithm, but
was actually developed by Borůvka in 1926 — see [19], and [156]. It was developed before parallel computers existed, but it lends itself easily to parallelization. The resulting parallel algorithm bears a striking resemblance to the algorithm for connected components and spanning trees discussed above.

We begin by describing the basic algorithm. We must initially assume that the weights of all edges are all distinct. This is not a very restrictive assumption since we can define weights lexicographically.

The idea of this algorithm is as follows:

As with connected components, we regard the vertices of the graph as being partitioned into collections called “super-vertices”. In the beginning of the algorithm, each vertex of the graph is regarded as a super-vertex itself. In each phase of the algorithm, each super-vertex is merged with at least one other super-vertex to which it is connected by an edge. Since this procedure halves (at least) the number of super-vertices in each phase of the algorithm, the total number of phases that are required is \(\approx \lg n \). Each phase consists of the following steps:

1. Each super-vertex selects the lowest-weight edge that is incident upon it. These lowest-weight edges become part of the minimal spanning tree.

 If we consider the super-vertices, equipped only with these minimal-weight edges, we get several disjoint graphs. They are subgraphs of the original graph.

2. These subgraphs are collapsed into new super-vertices. The result is a graph with edges from a vertex to itself, and multiple edges between different super-vertices. We eliminate all self-edges and, when there are several edges between the same two vertices, we eliminate all but the one with the lowest weight.

Theorem 2.16. (Borůvka’s theorem) Iteration of the two steps described above, \(\lg n \) times, results in a minimal spanning tree of the weighted graph.

Proof. 1. We first prove that the algorithm produces a tree. This is very similar to the proof that the spanning-tree algorithm of the previous section, produced a tree. This argument makes use of the assumption that the edge-weights are all distinct. If we drop this assumption, it is possible (even if we resolve conflicts between equal-weight edges arbitrarily) to get cycles in the set of selected edges. Consider the graph that is a single closed cycle with all edges of weight 1.

 It is clearly possible to carry out step 1 of Borůvka’s algorithm (with arbitrary selection among equal-weight edges) in such a way that the selected edges form the original cycle. If the weights of the edges are all different the edge with the highest weight is omitted in the selection process — so we get a path that is not closed. If we assume that the result (of Borůvka’s algorithm) contains a cycle we get a contradiction by the following argument (see figure 6.27 on page 318):

 Consider the edge, \(e \), with the highest weight of all the edges in the cycle — this must be unique since all weights are distinct. This edge must be the lowest-weight edge incident on one of its end vertices, say \(v \). But this leads to a contradiction since there is another edge, \(e' \), incident upon \(v \) that is also included in the cycle. The weight of \(e' \) must be strictly less than that of \(e \) since all weights
are distinct. But this contradicts the way \(e \) was selected for inclusion in the cycle — since it can’t be the lowest weight edge incident upon \(v \) or \(v' \).

2. Every vertex of the original graph is in the tree — this implies that it is a spanning tree. It also implies that no new edges can be added to the result of Borůvků’s algorithm — the result would no longer be a tree. This follows the Edge-Selection step of the algorithm.

3. All of the edges in a minimal spanning tree will be selected by the algorithm. Suppose we have a minimal spanning tree \(T \), and suppose that the edges of the graph not contained in \(T \) are \(\{e_1, \ldots, e_k\} \). We will actually show that none of the \(e_i \) are ever selected by the algorithm. If we add \(e_k \) to \(T \), we get a graph \(T \cup e_k \) with a cycle.

We claim that \(e_k \) is the maximum-weight edge in this cycle.

If not, we could exchange \(e_k \) with the maximum-weight edge in this cycle to get a new tree \(T' \) whose weight is strictly less than that of \(T \). This contradicts the assumption that \(T \) was a minimal spanning tree.

Now mark these edges \(\{e_1, \ldots, e_k\} \in G \) and run Borůvků’s algorithm on the original graph. We claim that the \(e_i \) are never selected by Borůvků’s algorithm. Certainly, this is true in the first phase. In the following phases

1. If one of the \(e_i \) connects a super-vertex to itself, it is eliminated.
2. If there is more than one edge between the same super-vertices and one of them is \(e_i \), it will be eliminated, since it will never be the minimum-weight edge between these super-vertices.
3. Each super-vertex will consist of a connected subtree of \(T \). When we collapse them to single vertices, \(T \) remains a tree, and a cycle containing an \(e_i \) remains a (smaller) cycle — see figure 6.28. The edge \(e_i \) remains the maximum-weight edge of this new smaller cycle, and is not selected in the next iteration of the algorithm.
2. THE EULER TOUR ALGORITHM

Before super-vertices are collapsed

After super-vertices are collapsed

FIGURE 6.28.
4. The algorithm executes in $O(\log^2 n)$ time. This follows from exactly the same argument that was used in algorithm 2.5 on page 294. □

We can convert this procedure into a concrete algorithm by making a few small changes to 2.9 on page 306. We eliminate the incidence matrix and replace it by a weight matrix W. The fact that no edge connects two vertices is represented in W by a weight of ∞. We also eliminate ties in weights of edges by numbering the edges of the graph, and selecting the lowest-numbered edge with a given weight.

Algorithm 2.17. (Borůvka’s Algorithm.)

Input: A graph G with $|V| = n$ described by an $n \times n$ weight matrix $W(i,j)$.

Output: A $2 \times n$ array Edge, such that Edge$(1,i)$ and Edge$(2,i)$ are the endvertices of the edges in a minimal spanning tree.

Auxiliary memory: A one-dimensional arrays C and Flag, each with n elements. A $2 \times n \times n$ array B.

1. **Initialization.**
 a. for all i, $0 \leq i < n - 1$ do in parallel

 $D(i) \leftarrow i$

 Flag$(i) \leftarrow 1$

 Edge$(1,i) \leftarrow 0$

 Edge$(2,i) \leftarrow 0$

 endfor

 b. for all i, j, $0 \leq i, j \leq n - 1$ do in parallel

 $B(1,i,j) \leftarrow i$

 $B(2,i,j) \leftarrow j$

 endfor

 The remainder of the algorithm consists in doing steps 2 through 8 $\log n$ times:

 Construct the set S: $S \leftarrow \{i|\text{Flag}(i) = 1\}$.

2. **Selection.**

 for all $i \in S$ do in parallel

 Choose j_0 such that $W(i,j_0) = \min\{W(i,j)|j \in S\}$

 if none then $j_0 \leftarrow i$

 $C(i) \leftarrow j_0$

 Edge$(1,i) \leftarrow B(1,i,j_0)$

 Edge$(2,i) \leftarrow B(2,i,j_0)$

 endif

3. **Removal of isolated super-vertices.**

 for all i such that $i \in S$ do in parallel

 if $C(i) = i$, then Flag$(i) \leftarrow 0$

 endfor

4. **Update D.**

 for all $i \in S$, do in parallel

 $D(i) \leftarrow C(i)$

6Since Borůvka’s algorithm required that all edge-weights be unique.
2. THE EULER TOUR ALGORITHM

5. Consolidation.
 for $i = 0$ until $i > \log n$
 $j \in S$ do in parallel
 $C(j) \leftarrow C(C(j))$
 endfor

6. Final update.
 a. for all $i \in S$ do in parallel
 $D(i) \leftarrow \min(C(i), D(C(i)))$
 endfor
 b. for all i do in parallel
 $D(i) \leftarrow D(D(i))$
 endfor

7. Update the weight-matrix and B-arrays.
 a. for all $i \in S$ do in parallel
 for all $j \in S$ such that $j = D(j)$ do in parallel
 Choose $j_0 \in S$ such that
 $W(i, j_0) = \min\{W(i, k) | D(k) = i, k \in S\}$
 if none then $j_0 \leftarrow i$
 $W(i, j) = W(i, j_0)$
 $B(1, i, j) \leftarrow B(1, i, j_0)$
 $B(2, i, j) \leftarrow B(2, i, j_0)$
 endfor
 endfor
 b. for all $i \in S$ do in parallel
 for all $j \in S$ such that $i = D(i)$ do in parallel
 Choose $i_0 \in S$ such that
 $W(i_0, j) = \min\{W(k, j) | D(k) = i, k \in S\}$
 if none then $i_0 \leftarrow i$
 $W(i, j) = W(i_0, j)$
 $B(1, i, j) \leftarrow B(1, i_0, j)$
 $B(2, i, j) \leftarrow B(2, i_0, j)$
 endfor
 endfor
 c. for all $i \in S$ do in parallel
 $W(i, i) \leftarrow \infty$
 endfor

8. Select only current super-vertices for remaining phases of the algorithm.
 for all $i \in S$ do in parallel
 if $D(i) \neq i$ then
 $\text{Flag}(i) \leftarrow 0$
 endfor
 \[
 \text{for all } i, 0 \leq i \leq n - 1 \text{ do} \\
 \quad \text{if } i \neq D(i) \text{ then output} \\
 \quad \quad (\text{Edge}(1, i), \text{Edge}(2, i))
 \]
 \text{endfor}

Our program for computing minimal spanning trees is very much like that for connected components.

Input: A graph \(G \) with \(|V| = n \) described by an \(n - 1 \times n - 1 \) weight matrix \(W(i, j) \). (Nonexistence of an edge between two vertices \(i \) and \(j \) is denoted by setting \(W(i, j) \) and \(W(j, i) \) to “infinity”. In our C* program below, this is the pre-defined constant \texttt{MAXFLOAT}, defined in <values.h>.

Output: An \(n \times n \) array \(B \), giving the adjacency matrix of the minimal spanning tree.

1. We will assume the \(A \)-matrix is stored in a parallel float variable \(A \) in a shape named ‘graph’, and \(B \) is stored in a parallel \texttt{int} variable.
2. This algorithm executes in \(O(\lg^2 n) \) time using \(O(n^2) \) processors.

This operation never combines super-vertices that are not connected by an edge, so it does no harm. This operation never needs to be performed more than \(\lg n \) times, since the length of any chain of super-vertex pointers is halved in each step.

Here is a C* program for minimal spanning trees.

```c
#include <values.h>
#include <math.h>
#include <stdio.h>

shape [64][128] graph;
shape [8192] components;
#define N 10
int: graph temp, T, B1, B2; /* T holds the minimal spanning forest */
float: graph W;
float: components temp2;
int: components C, D, Flag, in_S, Edge1, Edge2,
i_0, j_0;
int i, j;
FILE *graph_file;

void main()
{
    int L = (int) (log((float) N) / log(2.0) + 1);
    /* Weight matrix stored in a text file. */
    graph_file = fopen("gfile", "r");
    with (graph)
    {
        char temp[100];
        for (i = 0; i < N; i++)
        {
```

\[\text{This is an } n \times n \text{ weight matrix with the main diagonal omitted}\]
char *p;
fsnprintf(graph_file, "\^[\^\n]\n", temp);
p = temp;
for (j = 0; j < N; j++)
 if (i != j)
 {
 char str[20];
 float value;
 int items_read = 0;
 sscanf(p, "%s", str);
 p += strlen(str);
p++;
 items_read = sscanf(str, "%g", &value);
 if (items_read < 1)
 {
 if (strchr(str, 'i') != NULL)
 value = MAXFLOAT;
 else
 printf("Invalid field = %s\n", str);
 }
 [i][j]W = value;
 }
 else
 [i][j]W = MAXFLOAT;
}

/* Initialize super−vertex array so that each
* vertex starts out being a super vertex.
*/
with (components)
{
 D = pcoord(0);
 Flag = 1;
 Edge1 = 0;
 Edge2 = 0;
}
with (graph)
{
 B1 = pcoord(0);
 B2 = pcoord(1);
}

/* Main loop for the algorithm. */
for (i = 0; i <= L; i++)
 {
 int i;
 /* This is step 2. */
 with (components)
 where (pcoord(0) < N)
in_S = Flag;
 else
 in_S = 0;
with (graph)

where (([[pcoord(0)]in_S == 1) && ([pcoord(1)]in_S == 1))

{ [pcoord(0)]temp2 = MAXFLOAT;
 [pcoord(0)]temp2 < ?= W;
 [pcoord(0)]j_0 = N + 1;
 where ([pcoord(0)]temp2 == W)
 [pcoord(0)]j_0 < ?= pcoord(1);
 where ([pcoord(0)]j_0 == N + 1)
 [pcoord(0)]j_0 = pcoord(0);
 [pcoord(0)]C = [pcoord(0)]j_0;
 [pcoord(0)]Edge1 = [pcoord(0)][[pcoord(0)]j_0]B1;
 [pcoord(0)]Edge2 = [pcoord(0)][[pcoord(0)]j_0]B2;
}

/* This is step 3 */
with (components)
where ([pcoord(0)]in_S == 1)
where ([pcoord(0)]C == pcoord(0))
[pcoord(0)]Flag = 0;

/* This is step 4 */

with (components)
where (in_S == 1)
D = C;

/* This is step 5 */

for (i = 0; i = L; i++)
with (components)
where (in_S == 1)
C = [C]C;

/* This is step 6a */

with (components)
where (in_S == 1)
D = (C < ?[C]D);

/* This is step 6b */

with (components)
where (in_S == 1)
D = [D]D;

/* Step 7a */
with (graph)
where ([pcoord(0)]in_S == 1)
where ([pcoord(1)]in_S == 1)
where (pcoord(1) == [pcoord(1)]D)
{ [pcoord(0)]temp2 = MAXFLOAT;
 [pcoord(0)]temp2 < ?= W;
2. THE EULER TOUR ALGORITHM

[pcpord(0)j_0 = N + 1;
where ([pcpord(0)]temp2 == W)
[pcpord(0)j_0 <?= pcoord(1);
where ([pcpord(0)]temp2 == MAXFLOAT)
[pcpord(0)j_0 = pcoord(1);

W = [pcpord(0)][pcpord(0)j_0]W;
B1 = [pcpord(0)][pcpord(0)j_0]B1;
B2 = [pcpord(0)][pcpord(0)j_0]B2;

} /* Step 7b */
with (graph)
where ([pcpord(0)]in_S == 1)
where ([pcpord(1)]in_S == 1)
where (pcpord(0) == [pcpord(0)]D)
where (pcpord(1) == [pcpord(1)]D)
{
[pcpord(1)]temp2 = MAXFLOAT;
[pcpord(1)]temp2 <?= W;

[pcpord(1)]i_0 = N + 1;
where ([pcpord(1)]temp2 == W)
[pcpord(1)]i_0 <?= pcoord(0);
where ([pcpord(1)]temp2 == MAXFLOAT)
[pcpord(1)]i_0 = pcoord(0);

W = [pcpord(1)i_0][pcpord(1)]W;
B1 = [pcpord(1)i_0][pcpord(1)]B1;
B2 = [pcpord(1)i_0][pcpord(1)]B2;

} /* Step 7c */
with (components)
where ([pcpord(0)]in_S == 1)
[pcpord(0)][pcpord(0)]W = MAXFLOAT;

/* Step 8 */
with (components)
where ([pcpord(0)]in_S == 1)
where ([pcpord(0)]D != pcoord(0))
[pcpord(0)]Flag = 0;

} /* End of big for−loop. */
/* Step 9 */
for (i = 0; i < N; i++)
if ([i]D != i)
printf(" Edge1=%d, Edge2=%d\n", [i]Edge1, [i]Edge2);

Here is a sample run of this program:
The input file is:

```
1.1 i 1.0 i i i i i i i
1.1 3.1 i i i i i i i
i 3.1 0.0 1.3 i i i i i
1.0 i 0.0 1.2 i i i i i
i i 1.3 1.2 3.5 i i i i i
i i i i i 2.1 2.4 i
i i i i i i 2.2 .9 1.7
i i i i i i 2.4 i .9 i
i i i i i i i 1.7 i
```

here we don’t include any diagonal entries, so the array is really $N-1 \times N-1$. The letter i denotes the fact that there is no edge between the two vertices in question – the input routine enters `MAXFLOAT` into the corresponding array positions of the Connection Machine (representing infinite weight).

See figure 6.29 for the graph that this represents.

The output is

```
0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
```

and this represents the minimal spanning tree shown in figure 6.30.
2.14. Find a minimal spanning tree of the graph with weight-matrix

\[
\begin{pmatrix}
2 & 3 & 1 & 0 & 4 & 5 & \infty & \infty \\
2 & \infty & \infty & 8 & -1 & \infty & -3 & 6 \\
3 & \infty & 9 & \infty & 7 & \infty & -2 & \infty \\
1 & \infty & 9 & \infty & -4 & \infty & \infty & 10 \\
0 & 8 & \infty & \infty & 11 & 12 & \infty & \infty \\
4 & -1 & 7 & -4 & 11 & \infty & 13 & \infty \\
5 & \infty & \infty & \infty & 12 & \infty & \infty & 14 \\
\infty & -3 & -2 & \infty & \infty & 13 & \infty & \infty \\
\infty & 6 & \infty & 10 & \infty & \infty & 14 & \infty
\end{pmatrix}
\]

How many components does this graph have?

2.15. Find an algorithm for computing a maximum weight spanning tree of an undirected graph.

2.6. Cycles in a Graph.

2.6.1. Definitions. There are many other graph-theoretic calculations one may make based upon the ability to compute spanning trees. We will give some examples.

Definition 2.18. If \(G = (V, E) \) is a graph, a:

1. path in \(G \) is a sequence of vertices \(\{v_1, \ldots, v_k\} \) such that \((v_i, v_{i+1}) \in E \) for all \(1 \leq i \leq k \);
2. cycle is a path in which the start point and the end point are the same vertex.
3. simple cycle is a cycle in which no vertex occurs more than once (i.e. it does not intersect itself).
We define a notion of \textit{sum} on the edges of an undirected graph. The sum of two distinct edges is their \textit{union}, but the sum of two copies of the same edge is the empty set. We can easily extend this definition to \textit{sets} of edges, and to \textit{cycles} in the graph. Given this definition, the set of all cycles of a graph, equipped with this definition of sum form a mathematical system called a \textit{group}. Recall that a group is defined by:

Definition 2.19. A group, G, is a set of objects equipped with an operation $\ast : G \times G \rightarrow G$ satisfying the conditions:

1. It has an \textit{identity element}, e. This has the property that, for all $g \in G$, $e \ast g = g \ast e = g$.
2. The operation \ast is \textit{associative}: for every set of three elements $g_1, g_2, g_3 \in G$, $g_1 \ast (g_2 \ast g_3) = (g_1 \ast g_2) \ast g_3$.
3. Every element $g \in G$ has an inverse, g^{-1} with respect to \ast: $g \ast g^{-1} = g^{-1} \ast g = e$.

A group will be called \textit{abelian} if its \ast-operation is also \textit{commutative} — i.e., for any two elements $g_1, g_2 \in G$, $g_1 \ast g_2 = g_2 \ast g_1$.

The identity-element in our case, is the \textit{empty set}. The \textit{inverse} of any element is \textit{itself}. Figure 6.31 illustrates this notion of the sum of two cycles in a graph. Notice that the common edge in cycle A and B \textit{disappears} in the sum, $A + B$.

Definition 2.20. A basis for the cycles of a graph are a set of cycles with the property that all cycles in the graph can be expressed uniquely as sums of elements of the basis.

Given a graph G with some spanning tree T, and an edge $E \in G - T$ the cycle corresponding to this edge is the cycle that results from forming the \textit{union} of E with the path P connecting the endpoints of E in T.

2.6.2. \textit{A simple algorithm for a cycle basis.} In general, there are many distinct bases for the cycles of a graph. It turns out that there is a 1-1 correspondence between
the cycles in such a basis, and the edges that do not occur in a spanning tree of the graph.

Given:
1. algorithm 2.9 on page 306.
2. Algorithm 2.4 on page 291 for finding shortest paths in the spanning tree.

we can easily compute a basis for the cycles of a graph by:

1. Finding a spanning tree for the graph, using Borůvka’s algorithm (after assigning unique weights to the edges);
2. Computing the set of omitted edges in the graph — these are edges that appeared in the original graph, and do not appear in the spanning tree.
3. Compute the shortest paths in the spanning tree, between the end-vertices of these omitted edges — using algorithm 2.4 on page 291. The union of an omitted edge with the shortest path connecting its end-vertices is a basis-cycle of the graph.

This algorithm for a cycle-basis of a graph is not particularly efficient: it requires \(O(n^2)\) processors for the computation of the spanning tree and \(O(n^{2.376})\) processors for finding the minimal paths in this spanning tree. The path-finding step is the most expensive, and makes the processor requirement for the whole algorithm \(O(n^{2.376})\).

2.6.3. Lowest Common Ancestors. We will present an algorithm for finding these paths that uses fewer processors. It was developed in [158] by Tsin and Chin and makes use of the algorithm for an inverted spanning forest in section 2.4.1 on page 311. A key step in this algorithm involves finding lowest common ancestors of pairs of vertices in an inverted spanning tree.

Definition 2.21. Let \(T = (V, E)\) be an in-tree (see 1.15 on page 282).

1. A vertex \(v \in V\) is an ancestor of a vertex \(v' \in V\), written \(v \succeq v'\), if there is a directed path from \(v'\) to \(v\) in \(T\).
2. Let \(v_1, v_2 \in V\) be two vertices. A vertex \(v \in V\) is the lowest common ancestor of \(v_1\) and \(v_2\) if \(v \succeq v_1\) and \(v \succeq v_2\), and for any vertex \(w\), \(w \succeq v_1\) and \(w \succeq v_2 \Rightarrow w \succeq v\). See figure 6.32 for an example.

It is fairly simple to compute the lowest common ancestor of two vertices in an inverted spanning tree. We use an algorithm based on algorithm 2.11 on page 312:

Algorithm 2.22. Let \(T = (V, E)\) be an in-tree described by a function \(f: V \rightarrow V\) that maps a vertex to its immediate ancestor. Given two vertices \(v_1, v_2 \in V\), we can compute their lowest common ancestor \(v\) by:

1. Compute the path-function, \(\hat{f}\), associated with \(f\), using 2.11 on page 312.
2. Perform a binary search of the rows \(\hat{f}(v_1, \ast)\) and \(\hat{f}(v_2, \ast)\) to determine the smallest value of \(j\) such that \(\hat{f}(v_1, j) = \hat{f}(v_2, j)\). Then the common value, \(\hat{f}(v_1, j)\) is the lowest common ancestor of \(v_1\) and \(v_2\).

This algorithm can clearly be carried out in parallel for many different pairs of vertices in \(T\). It is the basis of our algorithm for a cycle-basis of a graph. We use lowest common ancestors to compute a path connecting the endpoints of an omitted edge in a spanning tree — recall the algorithm on page 329.
Let $G = (V, E)$ be an undirected graph, with $|V| = n$. We can compute a basis for the cycles of G by:

2. Compute the set, $\{e_1, \ldots, e_k\}$, of omitted edges of G — these are edges of G that do not occur in T. They are $E - E'$ (where we must temporarily regard the edges in E' as undirected edges).
3. Compute the set of paths from the leaves of T to the root, using algorithm 2.11 on page 312.
4. For each of the e_i, do in parallel:
 a. Compute the end-vertices $\{v_{i,1}, v_{i,2}\}$;
 b. Compute the lowest-common ancestor v_i of $\{v_{i,1}, v_{i,2}\}$.
 c. Compute the paths $p_{1,i}$ and $p_{2,i}$ from $v_{i,1}$ and $v_{i,2}$ to v_i, respectively.
 d. Output $e_i \cup p_{1,i} \cup p_{2,i}$ as the ith fundamental cycle of G.

Unlike the simple algorithm on page 329, this algorithm requires $O(n^2)$ in its straightforward implementation. The more sophisticated implementations described in [158] require $O(n^2 / \lg^2 n)$ processors. The execution time of both of these implementations is $O(\lg^2 n)$.

Exercises.

2.16. Write a C* program to implement the algorithm described on page 443 for testing whether weighted graphs have negative cycles.

2.17. Suppose G is a complete graph on n vertices (recall that a complete graph has an edge connecting every pair of vertices). Describe a cycle-basis for G.

2.18. A planar graph, G, is a graph that can be embedded in a plane — in other words, we can draw such a graph on a sheet of paper in such a way that no
edge crosses another. If we delete the planar graph from the plane into which it is embedded\(^8\), the plane breaks up into a collection of polygon, called the faces of the embedding. The faces of such an embedding correspond to simple cycles in the graph — say \(\{c_1, \ldots, c_k\}\). Show that one of these cycles can be expressed as a sum of the other, and if we delete it, the remaining cycles form a basis for the cycles of \(G\).

2.7. Further Reading. Graph theory has many applications to design and analysis of networks. A good general reference on graph theory is [65] by Harary. Research on the design of efficient parallel algorithms in graph theory goes back to the mid 1970’s. Many problems considered in this section were studied in Carla Savage’s thesis [139]. Chandra investigated the use of graphs in relation to the problem of multiplying matrices — see [24]. Planar graphs are graphs that can be embedded in a plane. In 1982 Ja’Ja’ and Simon found \(\text{NC}\)-parallel algorithms for testing whether a given graph is planar, and for embedding a graph in a plane if it is — see [77]. This was enhanced by Klein and Reif in 1986 — see [89], and later by Ramachandran and Reif in 1989 — see [132]. Ja’Ja’

One problem we haven’t considered here is that of computing a depth-first search of a graph. Depth-first search is the process of searching a graph in such a way that the search moves forward\(^9\) until it reaches a vertex whose neighbors have all been searched — at this point it backtracks a minimum distance and continues in a new direction. It is easy to see that the time required for a sequential algorithm to perform depth-first search on a graph with \(n\) vertices is \(O(n)\). Depth-first search forms the basis of many sequential algorithms — see [154]. In 1977, Alton and Eckstein found a parallel algorithm for depth first search that required \(O(\sqrt{n})\)-time with \(O(n)\) processors — see [5]. Corneil and Reghbat conjectured that depth-first search was inherently sequential in [36] and Reif proved that lexicographically first depth-first search\(^{10}\) is P-complete in [133]. The author found an \(\text{NC}\)-algorithm for depth-first search of planar graphs — see [150]. This was subsequently improved by Hagerup in 1990 — see [63]. The best parallel algorithm (in terms of time and number of processors required) for depth-first search of planar graphs is currently (1992) that of Shannon — see [147]. This was extended to arbitrary graphs that do not contain subgraphs isomorphic to \(K_{3,3}\) by Khuller in [87]\(^{11}\).

In 1987 Aggarwal and Anderson found a random \(\text{NC}\) algorithm for depth-first search of general graphs. This is an algorithm that makes random choices

\(^8\)I.e., if draw the graph on a piece of paper in such a way that no edge crosses over another, and then cut the paper along the edges.

\(^9\)I.e., moves to new vertices

\(^{10}\)This is the form of depth-first search that always selects the lowest-numbered vertex when it has multiple choices.

\(^{11}\)\(K_{3,3}\) is the complete bipartite graph on two sets of 3 vertices — see 5.8 on page 90.
during its execution, but has expected execution-time that is poly-logarithmic in the number of processors. See chapter 7 for a discussion of randomized algorithms in general.

A graph is called chordal if every cycle of length \(\geq 4 \) can be “short-circuited” in the sense that there exists at least one pair of non-consecutive vertices in every such cycle that are connected by an edge. These graphs have the property that there exist NC algorithms for many important graph-theoretic problems, including: optimal coloring, maximum independent set, minimum clique cover. See the paper, \([122]\), of Naor, Naor and Schffer.

If the maximum degree of a vertex in a graph is \(\Delta \), there is an algorithm, due to Luby, for coloring the graph in \(\Delta + 1 \) colors. This algorithm runs on a CREW PRAM and executes in \(O(\lg^3 n \lg \lg n) \) time, using \(O(n + m) \) processors — see \([108]\). In \([82]\), Karchmer and Naor found an algorithm that colors the graph with \(\Delta \) colors — this second algorithm runs on a CRCW-PRAM.

There are several algorithms for finding a maximal independent set in a graph — see page 417 of the present book for a discussion of these results.

In general we haven’t considered algorithms for directed graphs here. These graphs are much harder to work with than undirected graphs and, consequently, much less is known about them. For instances, the problem of finding even a sequential algorithm for spanning in-trees and out-trees of a weighted directed graph is much more difficult than the corresponding problem for undirected graphs. Several incorrect papers were published before a valid algorithm was found. See \([155]\), by Robert Tarjan. The first NC-parallel algorithms for this problem were developed by Lovász in 1985 (\([105]\)) and in the thesis of Zhang Yixin (\([175]\)).

Exercises.

2.19. Write a program that not only finds the length of the shortest path between every pair of vertices, but also finds the actual paths as well. This requires a variant on the algorithm for lengths of shortest paths presented above. In this variant every entry of the matrix is a pair: (distance, list of edges). The algorithm not only adds the distances together (and selects the smallest distance) but also concatenates lists of edges. The lists of edges in the original A-matrix initially are either empty (for diagonal entries) or have only a single edge.

2.20. Given an example of a weighted graph for which Borůvka’s algorithm finds a minimal spanning tree in a single step.

2.21. Suppose \(G = (V, E) \) is a connected undirected graph. An edge \(e \) with the property that deleting it disconnects the graph is called a bridge of \(G \). It turns out that an edge is a bridge if and only if it is not contained in any fundamental cycle of the graph. Give an algorithm for computing all of the bridges of a connected graph. It should execute in \(O(\lg^2 n) \) time and require no more than \(O(n^2) \) processors.

2.22. Give an example of a weighted graph with \(n \) vertices, for which Borůvka’s algorithm requires the full \(\lceil \lg n \rceil \) phases.
2.23. The program for minimal spanning trees can be improved in several ways:

1. The requirement that all weights be distinct can be eliminated by either redefining the method of comparing weights so that the weights of all pairs of edges behave as if they are distinct;
2. The method of storing edge-weights can be made considerably more memory-efficient by storing them in a list of triples (start-vertex, end-vertex, weight).

Modify the program for minimal spanning trees to implement these improvements.

2.24. Write a C* program for finding an approximate solution to the Traveling Salesmen problem

2.25. What is wrong with the following procedure for finding an inverted spanning forest of a graph?

1. Find a spanning tree of the graph using Borůvka’s algorithm (with some arbitrary distinct values given for the weights. It is easy to modify Borůvka’s algorithm to give a minimal undirected spanning forest of a graph with more than one component.
2. Select an arbitrary vertex to be the root.
3. Make this undirected spanning tree into a directed tree via a technique like the first step of 2.1 on page 284. Make the directed edges all point toward the root.

3. Parsing and the Evaluation of arithmetic expressions

3.1. Introduction. This section develops an algorithm for parsing precedence grammars and the evaluation of an arithmetic expression in \(O(\log n) \) time. Although parts of this algorithm are somewhat similar to the doubling algorithms of the previous section, we put these algorithms in a separate section because of their complexity. They are interesting for a number of reasons.

Parsing is a procedure used in the front-end of a compiler — this is the section that reads and analyzes the source program (as opposed to the sections that generate object code).

The front end of a compiler generally consists of two modules: the scanner and the parser. The scanner reads the input and very roughly speaking checks spelling — it recognizes grammatic elements like identifiers, constants, etc. The parser then takes the sequence of these identified grammatic elements (called tokens) and analyzes their overall syntax. For instance, in a Pascal compiler the scanner might recognize the occurrence of an identifier and the parser might note that this identifier was used as the target of an assignment statement.
In the preceding section we saw how a DFA can be efficiently implemented on a SIMD machine. This essentially amounts to an implementation of a scanner. In the present section we will show how a parser (at least for certain simple grammars) can also be implemented on such a machine. It follows that for certain simple programming languages (ones whose grammar is an operator-precedence grammar), the whole front end of a compiler can be implemented on a SIMD machine. We then show how certain operations similar to those in the code-generation part of a compiler can also be efficiently implemented on a SIMD machine. Essentially the algorithm presented here will take a syntax tree for an arithmetic expression (this is the output of the parser) and evaluate the expression, but it turns out not to be much more work to generate code to compute the expression.

Recall that a syntax-tree describes the order in which the operations are performed — it is like a parse tree that has been stripped of some unnecessary verbiage (i.e. unit productions, names of nonterminals, etc.). If the expression in question is \((a + b)/(c - d) + e/f\) the corresponding syntax tree is shown in figure 6.33.

See [2], chapter 2, for more information on syntax trees.

3.2. An algorithm for building syntax-trees. The algorithm for building syntax trees of expressions is due to Bar-On and Vishkin in [12]. We begin with a simple algorithm for fully-parenthesizing an expression. A fully parenthesized expression is one in which all precedence rules can be deduced by the patterns of parentheses: for instance \(a + b * c\) becomes \(a + (b * c)\), since multiplication generally (i.e. in most programming languages) has precedence over addition. Operators within the same level of nesting of parentheses are assumed to be of equal precedence. The algorithm is:

Algorithm 3.1. 1. Assume the original expression was enclosed in parentheses.
2. for each ‘+’, ‘-’ operator insert two left parentheses to its right and two right parentheses to its left — i.e. ‘a + b’ becomes ‘(a) + ((b)’.

3. For each ‘*’, ‘/’ operator insert one left parenthesis to its right and one right parenthesis to its left — i.e. ‘a * b’ becomes ‘(a) * (b)’.

4. For each left (resp. right) parenthesis, insert two additional left (resp. right parentheses) to its right (resp. left).

These four steps, applied to ‘a + b * (c − d)’ lead to ‘(((a)) + ((b) * (((c)) − (((d)))))’)’. It is intuitively clear that this procedure will respect the precedence rules — *’s will tend to get buried more deeply in the nested parentheses since they only get one layer of opposing parentheses put around them, while +’s get two. Note that this procedure always results in too many parentheses — this does not turn out to create a problem. At least the parentheses are at the proper level of nesting. In the expression with extraneous parentheses computations will be carried out in the correct order if the expressions inside the parentheses are evaluated first. For instance, if we strip away the extraneous parentheses in the sample expression above we get: ‘(a + (b * (c − d)))’. Bar-On and Vishkin remark that this procedure for handling precedence-rules was used in the first FORTRAN compilers.

This little trick turns out to work on general operator-precedence grammars. This construction can clearly be carried out in unit time with n processors — simply assign one processor to each character of the input. Each processor replaces its character by a pointer to a linked list with the extra symbols (for instance). Although the rest of the algorithm can handle the data in its present form we copy this array of characters and linked lists into a new character-array. This can be done in \(O(\lg n)\) time using \(n\) processors — we add up the number of characters that will precede each character in the new array (this is just adding up the cumulative lengths of all of the little linked lists formed in the step above) — this gives us the position of each character in the new array. We can use an algorithm like that presented in the introduction for adding up \(n\) numbers — i.e. algorithm 1.4 (on page 268) with \(*\) replaced by +. We now move the characters in constant time (one step if we have enough processors).

We will, consequently, assume that our expression is the highly parenthesized output of 3.1. We must now match up pairs of parentheses. Basically this means we want to have a pointer associated with each parenthesis pointing to its matching parenthesis — this might involve an auxiliary array giving subscript-values. Now we give an algorithm for matching up parentheses. The algorithm given here is a simplification of the algorithm due to Bar-On and Vishkin — our version assumes that we have \(n\) processors to work with, rather than \(n/\lg n\). See the appendix for this section for a discussion of how the algorithm must be changed to allow for the smaller number of processors.

Algorithm 3.2. Input: An array \(C[i]\) of the characters in the original expression.

Output: An array \(M[i]\). If \(i\) is the index of a parenthesis in \(C[i]\), \(M[i]\) is the index of the matching parenthesis.

Auxiliary arrays: \(\text{Min-left}[i, j], \text{Min-right}[i, j]\), where \(j\) runs from 1 to \(\lg n\) and, for a given value of \(j\), \(i\) runs from 0 to \(2^n − j\). \(A[i], L[i]\).
We present an algorithm that is slightly different from that of Bar-On and Vishkin — it is simpler in the present context since it makes use of other algorithms in this book. We start by defining an array $A[\ast]$:

$$A[j] = \begin{cases} 1, & \text{if there is a left parenthesis at position } j; \\ -1, & \text{if there is a right parenthesis at position } j. \end{cases}$$

Now we compute the cumulative sums of this array, using the algorithm in the introduction on page 268 (or 1.4). Let this array of sums be $L[\ast]$, so $L[i] = \sum_{j=1}^{i} A[j]$. Basically, $L[i]$ indicates the level of nesting of parentheses at position i of the character array, if that position has a left parenthesis, and the level of nesting -1, if that position has a right parenthesis.

Here is the idea of the binary search: Given any right parenthesis in, say, position i of the character array, the position, j, of the matching left parenthesis is the maximum value such that $L[j] = L[i] + 1$. We set up an tree to facilitate a binary search for this value of j. Each level of this tree has half as many siblings as the next lower level and each node has two numbers stored in it: Min-Right, which is equal to the minimum value of $L[i]$ for all right parentheses among that node’s descendants and Min-Left, which is the corresponding value for left parentheses. See figure 6.34.

We can clearly calculate these values for all of the nodes of the tree in $O(\lg n)$ time using n processors (actually we can get away with $n/ \lg n$ processors, if we use an argument like that in the solution to exercise 3 at the end of §1). Now given this tree and a right parenthesis at location i, we locate the matching left parenthesis at location j by:

1. Moving up the tree from position i until we arrive at the right child of a node whose left child, k, satisfies $\text{Min-Left} \leq L[i] + 1$;

2. Travel down the tree from node k, always choosing right children if possible (and left children otherwise). Choosing a right child is possible if its Min-Left value is $\leq L[i] + 1$.

Given this matching of parentheses, we can build the syntax tree, via the following steps:
1. Remove extra parentheses: In this, and in the next step processors assigned to parentheses are active and all others are inactive. Every right parenthesis is deleted if there is another right parenthesis to its left, and the corresponding left parentheses are also adjacent. Similarly, a left parenthesis is deleted if there is another one to its right and the corresponding right parentheses are adjacent. In terms of the array M[i] we delete position i if
\[M[i - 1] = M[i] + 1 \]
Having made the decision to delete some parentheses, we re-map the entire expression. We accomplish this by using two extra auxiliary arrays: D[i] and V[i]. We set D[i] to 1 initially and mark elements to be deleted by setting the corresponding values of D[i] to 0. Having done this, we make V[i] into the cumulative sum of the D-array. When we are done V[i] is equal to the index-position of the i-th element of the original C-array, if it is to be retained.

Now we re-map the C[i] and M[i] arrays, using the V array. When we are done:
- The entire expression is enclosed in parentheses
- Each variable or constant is enclosed in parentheses
- All other extraneous parentheses have been deleted

2. Each pair of parentheses encloses a subexpression representing a small subtree of the entire syntax tree. The root of this little subtree corresponds to the arithmetic operation being performed in the subexpression. We assign a processor to the left parenthesis and it searches for the operator being executed in the subexpression. We store the locations of these operators in a new array Op[i]. Suppose we are in position i of the re-mapped expression. There are several possibilities:
- the quantity to the right of the left parenthesis is a constant or variable and the quantity to the right of that is the matching right parenthesis. Then position i is the left parenthesis enclosing a variable or constant.
 \[\text{Op}[i] \leftarrow i + 1, \text{Op}[\text{M}[i]] \leftarrow i + 1 \]
- the quantity to the right of the left parenthesis is a constant or variable and the quantity to the right of that is not a right parenthesis. In this case the operator is the next token, in sequence.
 \[\text{Op}[i] \leftarrow i + 1, \text{Op}[\text{M}[i]] \leftarrow i + 1 \]
- the quantity to the right of the left parenthesis is another left parenthesis, p. In this case the left-operand (i.e. child, in the subtree) is another subexpression. The operator (or root of the subtree) is the token following the right parenthesis corresponding to p. We perform the assignments:
 \[\text{Op}[i] \leftarrow \text{M}[i + 1] + 1, \text{Op}[\text{M}[i]] \leftarrow \text{M}[i + 1] + 1 \]

3. Pointers are set between the root (operator) and the pair of matching parentheses that enclose the expression. We store these in new arrays Lpar[i] and Rpar[i]. These pointers are set at the same time as the Op-array.

4. Processors assigned to operators are active, all others are inactive. Suppose the operator is one of ‘+’, ‘-’, ‘*’, or ‘/’. The previous operator is set to be its left child and the operand to its right its right child. We store these pointers in two new arrays: Lchild[i] and Rchild[i]. The processor finds them as follows: if we are in position i and:
6. A SURVEY OF SYMBOLIC ALGORITHMS

- C[i − 1] is a constant or a variable. In this case the previous entry contains the operator. and we set Lchild[i] ← i − 2
- C[i − 1]='. In this case the operator is in the entry to the left of the left match. We set Lchild[i] ← M[i + 1]− 1

We set the Rchild[i]-array by an analogus set of steps:
- If C[i + 1] is a constant or a variable, then the next entry contains the operator and we set Rchild[i] ← i + 2
- If C[i + 1]=r', then the operator is in the entry to the left of the left match. We set Rchild[i] ← M[i + 1]+1

The parse-tree is essentially constructed at this point. Its root is equal to Op[0]. Figure 6.35 gives an example of this algorithm.

3.3. An algorithm for evaluating a syntax tree. Given a syntax tree for an expression, we can evaluate the expression using an algorithm due to Gibbons and Rytter in [58].

The statement of their result is:

Theorem 3.3. There exists an algorithm for evaluating an expression of length n consisting of numbers, and operations +, −, , and / in time O(\(\lg n\)) using \(n/\lg n\) processors.

3.4. 1. Note that this algorithm is asymptotically optimal since its execution time is proportional to the sequential execution time divided by the number of processors.

2. The methods employed in this algorithm turn out to work for any set of algebraic operations \(\{\ast_1, \ldots, \ast_k\}\) with the property that:
 a. The most general expression involving these operations in one variable and constant parameters is of bounded size. Say this expression is: \(f(x; c_1, \ldots, c_l)\), where \(x\) is the one variable and the \(c_i\) are parameters.
 b. The composite of two such general expressions can be computed in bounded time. In other words, if \(f(x; c'_1, \ldots, c'_l) = f(f(x; c_1, \ldots, c_l); d_1, \ldots, d_l)\), then the \(c'_i\) can be computed from the \(c_i\) and the \(d_i\) in constant time.

 In the case of the arithmetic expressions in the statement of the theorem, the most general expression in one variable is \(f(x; a, b, c, d) = (ax + b)/(cx + d)\). The composite of two such expressions is clearly also of this type and the new coefficients can be computed in constant time:

 If \(f(x; a, b, c, d) = (ax + b)/(cx + d)\), then \(f(f(x; a', b', c', d'); a, b, c, d) = f(x; a', b', c', d')\), where \(a' = a + cb, b' = ab + db, c' = ac + cd, d' = cb + dd\). In fact it is easy to see that, if we write these sets of four numbers as matrices \(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{c} & \hat{d} \end{pmatrix}\) (matrix product).

 This reasoning implies that the algorithms presented here can also evaluate certain kinds of logical expressions in time \(O(\lg n)\). It turns out (as pointed out by Gibbons and Rytter in [58]) that the problem of parsing bracket languages and input-driven languages can be reduced to evaluating a suitable algebraic expression, hence can also be done in \(O(\lg n)\) time. In the case of parsing these grammars conditions a and b turn out to be satisfied because the algebraic expressions in question live in a mathematical system with only a finite number of values — i.e.
Figure 6.35. Example of the parallel parsing algorithm
it is as if there were only a finite number of numbers upon which to do arithmetic operations.

The idea of this algorithm is to take a syntax tree and prune it in a certain way so that it is reduced to a single node in \(O(\lg n) \) steps. This is nothing but the Parallel Tree Contraction method, described in § 2.1 (page 289). Each step of the pruning operation involves a partial computation of the value of the expression and in the final step the entire expression is computed. Figures 6.36 and 6.37 illustrate this pruning operation.

Here \(c \) is a constant and \(op_1 \) and \(op_2 \) represent operations or formulas of the form \(f(x; a, b, c, d) \) in remark 3.4.4 above. Note that every node of the syntax tree has two children — it is not hard to see that in such a tree at least half of all of the nodes are leaves. This pruning operation removes nodes with the property that one of their children is a leaf. The total number of leaves is halved by this operation when it is properly applied — we will discuss what this means shortly. Since the property of having two children is preserved by this operation, the tree will be reduced to a single node (the root) in \(O(\lg n) \) steps.
The phrase “properly applied” in the sentence above means that the operation cannot be applied to two adjacent nodes in the same step. We solve this problem by numbering all of:

1. the leaf nodes that are right children; and
2. the leaf nodes that are left children.

In each step of the computation we perform the pruning operation of all odd-numbered right-child leaf nodes, then on all odd numbered left-child leaf nodes. The net result is that the number of leaf-nodes is at least halved in a step. We renumber the leaf-nodes of the new graph by halving the numbers of the remaining nodes (all of which will have even numbers).

The numbers are initially assigned to the leaves by an algorithm called the *Euler-Tour Algorithm*. This is a simple and ingenious algorithm due to Tarjan and Vishkin, that is described in §2 in chapter 6 of this book. The main thing that is relevant to the present topic is that the execution-time of this algorithm is \(O(\lg n)\).

Now put two numbers, **Right-count**, and **Left-count**, on each node of this path:

1. Non leaf nodes get 0 for both values;
2. A right-child leaf node gets 1 for **Right-count** and 0 for **Left-count**;
3. A left-child leaf node gets 0 for **Right-count** and 1 for **Left-count**;

Now form cumulative totals of the values of **Right-count** and **Left-count** over this whole Euler Tour. This can be done in \(O(\lg n)\) time and results in a numbering of the leaf-nodes. This numbering scheme is arbitrary except that adjacent leaf-nodes (that are both right-children or left-children) will have consecutive numerical values.

The whole algorithm for evaluating the expression is:

1. Form the syntax tree of the expression.
2. Number the leaf-nodes of this syntax tree via the Euler-Tour algorithm (2.1).
3. Associate an identity matrix with every non leaf node of the tree.

Following remark 3.4, the *identity matrix*, \(
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\), is associated with the function

\[f(x; 1,0,0,1) = x \] — the *identity function*. Interior nodes of the tree will, consequently, have the following data associated with them:

1. an operation;
2. two children;
3. a \(2 \times 2\) matrix;

The meaning of this data is: calculate the values of the two child-nodes; operate upon them using the operation, and plug the result (as \(x\)) into the equation \((ax + b)/(cx + d)\), where is the matrix associated with the node.

4. Perform \(\lg n\) times:

1. the pruning operation on odd-numbered right-child leaf-nodes. We refer to diagrams 6.36 and 6.37. The matrix, \(M'\), on the node marked \(op_1(op_2(\ast, \ast), c)\) is computed using the matrix, \(M\), on the node marked \(op_2\) and the operation coded for \(op_1\) via:
 - If the corresponding left sibling is also a constant, then just perform the indicated operation and compute the result; otherwise
 - a. If \(op_1 = \ '+'\) then \(M' = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \cdot M;\)
b. If \(op_1 = '+' \) then \(M' = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix} \cdot M; \)

c. If \(op_1 = '-' \) then \(M' = \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix} \cdot M; \)

d. If \(op_1 = '/' \) then \(M' = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \cdot M; \)

Perform a pruning operation on odd-numbered left-child leaf nodes, using a diagram that is the mirror image of 6.36 and:

- If the corresponding right sibling is also a constant, then just perform the indicated operation and compute the result; otherwise

 a. If \(op_1 = '+' \) then \(M' = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \cdot M; \)

 b. If \(op_1 = '-' \) then \(M' = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix} \cdot M; \)

 c. If \(op_1 = '-' \) then \(M' = \begin{pmatrix} -1 & c \\ 0 & 1 \end{pmatrix} \cdot M; \)

 d. If \(op_1 = '/' \) then \(M' = \begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix} \cdot M; \)

In every case the old matrix is left-multiplied by a new matrix that represents the effect of the operation with the value of the subtree labeled \(op_2 \). (see figures 6.36 and 6.37) plugged into an equation of the form \((ax + b)/(cx + d)\) (as \(x \)). For instance, consider the case of a reduction of a left leaf-node where the operation is division. In this case the value of the whole tree is \(c/x \), where \(x = \) the value of the subtree labeled \(op_2 \). But \(c/x = (0 \cdot x + c)/(1 \cdot x + 0) \), so its matrix representation is \(\begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix} \), and the value computed for the subtree labeled \(op_2 \) is to be plugged into this equation. Remark 3.4 implies that this is equivalent to multiplying the matrix, \(M \), associated with this node \((op_2) \) by \(\begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix} \).

Divide the numbers (i.e. the numbers computed using the Euler Tour algorithm — 2.1) of the remaining leaves (all of which will be even), by 2. This is done to number the vertices of the new graph — i.e. we avoid having to perform the Euler Tour Algorithm all over again.

When this is finished, we will have a matrix, \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \), at the root node and one child with a value ‘\(t \)’ stored in it. Plug this value into the formula corresponding to the matrix to get \((at + b)/(ct + d)\) as the value of the whole expression.

We conclude this section with an example. Suppose our initial expression is \((2 + 3/4) \cdot 5 + 2/3\).

1. We fully-parenthesize this expression, using algorithm 3.1, to get: \((((((2)) + ((3)/(4))) * (5)) + ((2)/(3)))\).

2. We carry out the parenthesis-matching algorithm, 3.2 (or the somewhat more efficient algorithm described in the appendix), to construct the parse-tree depicted in figure 6.38.

3. We “decorate” this tree with suitable matrices in order to carry out the pruning operation described above. We get the parse-tree in figure 6.39.

4. We order the leaf-nodes of the syntax tree, using the Euler Tour algorithm described in § 2.1 on page 284. We get the digram in figure 6.40.
3. Parsing and the Evaluation of Arithmetic Expressions

Figure 6.38. Original parse tree

![Original parse tree](image)

Figure 6.39. Labeled parse tree

![Labeled parse tree](image)
5. We carry out the pruning algorithm described above:
 a. Prune odd-numbered, right-child leaf nodes. There is only 1 such node — the child numbered 3. Since the left sibling is also a number, we compute the value at the parent — and we get figure 6.41.
 b. Prune odd-numbered, left-child leaf nodes. There are two of these — nodes 1 and 5. We get the parse-tree in figure 6.42. We renumber the leaf-nodes. All of the present node-numbers are even since we have pruned all odd-numbered nodes. We just divide these indices by 2 to get the tree in figure 6.43.
 c. Again, prune odd-numbered right-child leaf-nodes — there is only node 3. In this step we actually carry out one of the matrix-modification steps listed on page 341. The result is figure 6.44. Now prune the odd-numbered left-child leaf node — this is node 1. The result of this step is the value of the original expression.

3.4. Discussion and Further Reading. There is an extensive literature on the problem of parsing and evaluating arithmetic expressions, and related problems. We have already discussed Brent’s Theorem (§ 5.4 on page 42) — see [21]. Also see [22] and [95]. This work considered how one could evaluate computational networks for arithmetic expressions (and how one could find computational networks for an expression that facilitated this evaluation).

In [93] (1975), Kosoraju showed that the Cocke-Younger-Kasami algorithm for parsing context-free grammars lent itself to parallelization on an array processor. An improved version of this algorithm appeared in [25] (1987) by Chang, Ibarra,
Figure 6.41. Result of pruning odd-numbered, right-child leaf nodes

Figure 6.42. Result of pruning odd-numbered, left-child leaf nodes

Figure 6.43. Result of renumbering leaf-nodes
and Palis. An NC algorithm for parsing general context-free grammars was published by Rytter in 1985 — see [135]. This algorithm executes in \(O(\lg^2 n) \) time using \(O(n^6) \) processors on a PRAM computer. This algorithm can be implemented on cube-connected cycles and perfect shuffle computers with no asymptotic time degradation — see [136].

Also see [75], by Ibarra Sohn, and Pong for implementations of parallel parsing algorithms on the hypercube. In [137] Rytter showed that unambiguous grammars can be parsed in \(O(\lg n) \) time on a PRAM computer, but the number of processors required is still very large in general (although it is polynomial in the complexity of the input). If we restrict our attention to bracket languages the number of processors can be reduced to \(O(n / \lg n) \), as remarked above — see [138].

The Japanese 5th Generation Computer Project has motivated some work on parallel parsing algorithms — see [113] by Y. Matsumoto.

In 1982 Dekel and Sahni published an algorithm for putting arithmetic expressions in postfix form — see [44].

Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen have developed a fast parallel\(^{12}\) algorithm for evaluating certain types of computational networks — see [119]. Their algorithm involved performing matrix operations with \(n \times n \) matrices to evaluate computational networks that have \(n \) vertices. Their algorithm has a faster execution-time than what one gets by a straightforward application of Brent’s Theorem (the time is \(O(\lg n (\lg nd)) \) for a computational network of total size \(n \) and depth \(d \)), but uses many more processors (\(O(n^{2.376}) \), where \(n^{2.376} \) is the number of processors needed to multiply two \(n \times n \) matrices).

In [10], Baccelli and Fleury, and in [11], Baccelli and Mussi consider problems that arise in evaluating arithmetic expressions asynchronously.

Richard Karp and Vijaya Ramachandran have written a survey of parallel parsing algorithms — see [86].

Besides the obvious applications of parsing algorithms to compiling computer languages, there are interesting applications to image processing. See [26] by Chang and Fu for a discussion of parallel algorithms for parsing pattern and tree grammars that occurred in the analysis of Landsat images.

\(^{12}\) In general it is much faster than using Brent’s Theorem, as presented on page 42 in the present book.
3.1. Consider the language consisting of boolean expressions — that is, expressions of the form \(a \lor (b \land c) \), where \(\lor \) represents OR and \(\land \) represents AND. This is clearly an operator-precedence grammar (in fact, it is the same grammar as that containing arithmetic expressions, if we require all variables to take on the values 0 and 1). Recall the Circuit Value Problem on page 38. Does the algorithm in the present section provide a solution to this problem?\(^{13}\)

3.2. Modify the algorithms of this section to compile an expression. Assume that we have a stack-oriented machine. This does all of its computations on a computation stack. It has the following operations:

- **LOAD** \(\text{op} \) — pushes its operand onto the stack
- **ADD** — pops the top two elements of the stack, adds them, and pushes the sum.
- **MULT** — pops the top two elements of the stack, multiplies them, and pushes the product.
- **SUB** — pops the top two elements of the stack, subtracts the second element from the top element them, and pushes the difference.
- **DIV** — pops the top two elements of the stack, divides the second element by the top element them, and pushes the quotient.
- **EXCHA** — exchanges the top two elements of the stack.

The idea is to write a program using these instructions that leaves its result on the top of the stack. Incidentally, one advantage of this type of assembly language is that you rarely have to be concerned about addresses. There exist some actual machines with this type of assembly language. If \(\text{Ex} \) is an expression and \(\text{C(Ex)} \) represents the code required to compute the expression, you can generate code to compute general expressions by following the rules:

1. \(\text{C(Ex1 '+' Ex2)} = \text{C(Ex1)} \mid \text{C(Ex2)} \mid \text{ADD} \);
2. \(\text{C(Ex1 '*' Ex2)} = \text{C(Ex1)} \mid \text{C(Ex2)} \mid \text{MULT} \);
3. \(\text{C(Ex1 '-' Ex2)} = \text{C(Ex2)} \mid \text{C(Ex1)} \mid \text{SUB} \);
4. \(\text{C(Ex1 '/' Ex2)} = \text{C(Ex2)} \mid \text{C(Ex1)} \mid \text{DIV} \);

Here \('|' \) represents concatenation of code.

The problem is to modify the algorithm of §3 for evaluating an expression so that it produces assembly code that will compute the value of the expression when run on a computer. This algorithm should execute in time \(O(\lg n) \) using \(n \) processors. The main problem is to replace the \(2 \times 2 \) matrices used in the algorithm (actually, the formula \((ax + b)/(cx + d) \) that the matrices represent) by a data structure that expresses a list of assembly language instructions with an unknown sublist — this unknown sublist takes the place of the variable \(x \) in the formula \((ax + b)/(cx + d) \). This data structure should designed in conjunction with an algorithm to insert another such list into the position of the unknown sublist in unit time.

3.3. Find a fast parallel algorithm for parsing LISP.

\(^{13}\)And, therefore, a proof that no inherently sequential problems exist!
3.5. Appendix: Parenthesis-matching algorithm. We perform the following additional steps at the beginning of the parentheses-matching algorithm:

1. Partition the array (of characters) into \(n / \lg n \) segments of length \(\lg n \) each. Assign one processor to each of these segments.
2. Each processor scans its segment for matching pairs of parentheses within its segment. This uses a simple sequential algorithm (using a stack, for instance). The parentheses found in this step are marked and not further considered in this matching-algorithm. The remaining unmatched parentheses in each segment form a sequence of right parentheses followed by left parentheses: '))(('. We assume that the each processor forms a data-structure listing these unmatched parentheses in its segment — this might be a linked list of their positions in the character array. Since each segment is \(\lg n \) characters long, this can be done in \(O(\lg n) \) time.

Next each processor matches its leftmost unmatched left parenthesis and its rightmost unmatched right parenthesis — we will call these the extreme parentheses — with corresponding parentheses in the whole original sequence. This is done by a kind of binary search algorithm that we will discuss shortly.

Note that this operation of matching these extreme parentheses in each sequence basically solves the entire matching-problem. Essentially, if we match the rightmost right parenthesis in the sequence: ')))' with the leftmost left parenthesis in another sequence '((((', the remaining parentheses can be matched up by simply scanning both sequences. Here we are making crucial use of the fact that these sequences are short (2 \(\lg n \) characters) — i.e. we can get away with using a straightforward sequential algorithm for scanning the sequences:

Now we use the binary search algorithm in § 3, 3.2, to match up the extreme parentheses in each sequence, and then use the sequential scan in each sequence to match up the remaining parentheses.

Searching and Sorting

In this section we will examine several parallel sorting algorithms and the related problem of parallel searching. We have already seen one sorting algorithm at the end of § 2 in chapter 2. That algorithm sorted \(n \) numbers in time \(O(\lg^2 n) \) using \(O(n) \) processors. The theoretical lower bound in time for sorting \(n \) numbers is \(O(\lg n) \) (since this many comparisons must be performed). The algorithms presented here take advantage of the full power of SIMD computers.

3.6. Parallel searching. As is usually the case, before we can discuss sorting, we must discuss the related operation of searching. It turns out that, on a SIMD computer we can considerably improve upon the well-known binary search algorithm. We will follows Kruskal’s treatment of this in [94].

Proposition 3.5. It is possible to search a sorted list of \(n \) items using \(p \) processors in time \(\lceil \log(n+1) / \log(p+1) \rceil \).

This algorithm will be called \(\text{Search}_{p \cdot n} \).

Proof. We will prove by induction that \(k \) comparison steps serve to search a sorted list of size \((p+1)^k - 1\). In actually implementing a search algorithm the inductive description of the process translates into a recursive program. The result is certainly true for \(k = 0 \). Assume that it holds for \(k - 1 \). Then to search a sorted list of size \((p+1)^k - 1\) we can compare the element being searched for to the elements in the sorted list subscripted by \(i(p+1)^{k-1} - 1 \) for \(i = 1, 2, \ldots \). There are no more
than \(p \) such elements (since \((p + 1)(p + 1)^k - 1 > (p + 1)^k - 1\)). Thus the comparisons can be performed in one step and the problem is reduced to searching a list of size \((p + 1)^{k-1} - 1\).

Exercises.

3.4. Write a C* program to implement this search algorithm.

3.7. **Sorting Algorithms for a PRAM computer.** We have already seen the Batcher sorting algorithm. It was one of the first parallel sorting algorithms developed. In 1978 Preparata published several SIMD-parallel algorithms for sorting \(n \) numbers in \(O(\lg n) \) time — see [129]. The simplest of these sorting algorithms required \(O(n^2) \) processors. Essentially this algorithm used the processors to compare every key value with every other and then, for each key, counted the number of key values less than that key. When the proper key sequence was computed one additional step sufficed to move the data into sequence. This is fairly characteristic of unbounded parallel sorting algorithms — they are usually enumeration sorts and most of the work involves count acquisition (i.e. determining where a given key value belongs in the overall set of key values).

A more sophisticated algorithm in the same paper required only \(O(n \lg n) \) processors to sort \(n \) numbers in \(O(\lg n) \) time. That algorithm uses a parallel merging algorithm due to Valiant (see [163]) to facilitate count acquisition.

In 1983, Ajtai, Komlós, Szemerédi published (see [3] and [4]) a description of a sorting network that has \(n \) nodes and sorts \(n \) numbers in \(O(\lg n) \) time. The original description of the algorithm had a very large constant of proportionality \((2^{100}) \), but recent work by Lubotzky, Phillips and Sarnal implies that this constant may be more manageable — see [107].

3.7.1. **The Cole Sorting Algorithm — CREW version.** This section will discuss a sorting algorithm due to Cole in 1988 (see [29]) that is the fastest parallel sort to date. Unlike the algorithm of Ajtai, Komlós, Szemerédi, it is an enumeration-sort rather than a network. There are versions of this algorithm for a CREW-PRAM computer and an EREW-PRAM computer. Both versions of the algorithm use \(n \) processors and run in \(O(\lg n) \) time although the version for the EREW computer has a somewhat larger constant of proportionality. We will follow Cole’s original treatment of the algorithm in [29] very closely.

Although this sorting algorithm is asymptotically optimal in execution time and number of processors required, it has a rather large constant of proportionality in these asymptotic estimates\(^{14}\). In fact Lasse Natvig has shown that it is slower

\(^{14}\)At least the asymptotic time estimate.
than the Batcher sorting algorithm unless we are sorting \(> 10^{21} \) items! See [123] for the details. Nevertheless, Cole’s algorithm has enormous theoretical value, and may form the basis of practical sorting algorithms.

The high-level description of the Cole sorting algorithm is fairly simple. We will assume that all inputs to the algorithm are distinct. If this is not true, we can modify the comparison-step so that a comparison of two elements always finds one strictly larger than the other.

Suppose we want to sort \(n = 2^k \) data-items. We begin with a binary-tree with \(n \) leaves (and \(k \) levels), and each node of the tree has three lists or arrays attached to it (actual implementations of the algorithm do not require this but the description of the algorithm is somewhat simpler if we assume the lists are present). The leaves of the tree start out with the data-items to be sorted (one per leaf). Let \(p \) be a node of the tree.

Throughout this discussion, this tree will be called the sorting tree of the algorithm.

Definition 3.6. We call the lists stored at each node:

1. \(L(p) \) — this is a list that contains the result of sorting all of the data-items that are stored in leaf-nodes that are descendants of \(p \). The whole algorithm is essentially an effort to compute \(L(\text{the root}) \). Note: this list would not be defined in the actual algorithm — we are only using it as a kind of descriptive device.

2. \(\text{UP}(p) \) — this contains a sorted list of some of the data-items that started out at the leaves of the tree that were descendants of \(p \). \(\text{UP}(p) \subseteq L(p) \). In the beginning of the algorithm, all nodes of the tree have \(\text{UP}(p) = \{ \} \) — the empty list, except for the leaf-nodes: they contain the input data to the algorithm.

3. \(\text{SUP}(p) \) — this is a subsequence of \(\text{UP}(p) \) that is computed during the execution of the algorithm in a way that will be described below. \(\text{SUP}(p) \subseteq \text{UP}(p) \).

Although we use the term list to describe these sequences of data-items, we will often want to refer to data within such a list by its index-position. Consequently, these lists have many of the properties of variable-sized arrays. Actual programs implementing this algorithm will have to define them in this way.

This algorithm is based upon the concept of pipelining of operations. It is essentially a merge-sort in which the recursive merge-operations are pipelined together, in order to reduce the overall execution-time. In fact, Cole describes it as sorting algorithm that uses an \(O(\log n) \)-time merging algorithm. A straightforward implementation of a merge-sort would require an execution-time of \(O(\log^2 n) \) time. We pipeline the merging operations so that they take place concurrently, and the execution-time of the entire algorithm is \(O(\log n) \). The list \(\text{SUP} \) is an abbreviation for “sample-UP”. They are subsets of the UP-list and are the means by which the pipelining is accomplished — the algorithm merges small subsets of the whole lists to be merged, and use them in order to compute the full merge operations. The partial merges execute in constant time.

We will classify nodes of the tree as external or internal:

Definition 3.7. A node, \(p \), of the tree will be called external if \(\text{UP}(p) = L(p) \) — otherwise it will be called internal.
1. Note that we don’t have to know what \(L(p) \) is, in order to determine whether \(\text{UP}(p) = L(p) \) — we know the size of the list \(L(p) \) (which is \(2^k \), if \(p \) is in the \(k^{th} \) level from the leaves of the tree), and we just compare sizes.

2. The status of a node will change as the algorithm executes. At the beginning of the algorithm all nodes will be internal except the leaf-nodes. The interior-nodes will be internal because they contain no data so that \(\text{UP}(p) \) is certainly \(\neq L(p) \). The leaf-nodes will be external because they start out each containing a single item of the input-data — and a single data-item is trivially sorted.

3. All nodes of the tree eventually become external (in this technical sense of the word). The algorithm terminates when the root of the tree becomes external.

Algorithm 3.8. **Cole Sorting Algorithm — CREW version** With the definitions of 3.6 in mind, the execution of the algorithm consists in propagating the data up the tree in a certain fashion, while carrying out parallel merge-operations. In each phase we perform operations on the lists defined above that depend upon whether a node is internal or external. In addition the operations that we carry out on the external nodes depend on how long the node has been external. We define a variable \(\text{e_age} \) to represent this piece of data: when a node becomes external \(\text{e_age} = 1 \). This variable is incremented each phase of the algorithm thereafter. With all of this in mind, the operations at a node \(p \) are:

1. \(p \) internal:
 a. Set the list \(\text{SUP}(p) \) to every fourth item of \(\text{UP}(p) \), measured from the right. In other words, if \(|\text{UP}(p)| = t \), then \(\text{SUP}(p) \) contains items of rank \(t - 3 - 4i \), for \(0 \leq i < \lfloor t/4 \rfloor \).
 b. If \(u \) and \(v \) are \(p \)'s immediate children, set \(\text{UP}(p) \) to the result of merging \(\text{SUP}(u) \) and \(\text{SUP}(v) \). The merging operation is described in 3.10, to be described later.
2. \(p \) external with \(\text{e_age} = 1 \): Same as step 1 above.
3. \(p \) external with \(\text{e_age} = 2 \): Set the list \(\text{SUP}(p) \) to every second item of \(\text{UP}(p) \), measured from the right. In other words, if \(|\text{UP}(p)| = t \), then \(\text{SUP}(p) \) contains items of rank \(t - 1 - 2i \), for \(0 \leq i < \lfloor t/2 \rfloor \).
4. \(p \) external with \(\text{e_age} = 3 \): Set \(\text{SUP}(p) = \text{UP}(p) \).
5. \(p \) external with \(\text{e_age} > 3 \): Do nothing. This node no longer actively participates in the algorithm.

Several aspects of this algorithm are readily apparent:

1. The activity of the algorithm “moves up” the tree from the leaves to the root. Initially all nodes except the leaves are internal, but they also have no data in them. Consequently, in the beginning, the actions of the algorithm have no real effect upon any nodes more than one level above the leaf-nodes. As nodes become external, and \(\text{age} \) in this state, the algorithm ceases to perform any activity with them.
2. Three phases after a given node, \(p \), becomes external, its \(\text{parent} \) also becomes external. This is due to:
 a. \(\text{UP}(p) = L(p) \) — the sorted list of all data-items that were input at leaf-nodes that were descendants of \(p \).
 b. the rule that says that \(\text{SUP}(p) = \text{UP}(p) \) in the third phase after node \(p \) has become external.
c. step 2 of the algorithm for internal nodes (the parent, \(p'\), of \(p\) in this case) that says that \(\text{UP}(p')\) to the result of merging \(\text{SUP}(p)\) its the data in its sibling \(\text{SUP}(p'')\).

It follows that the execution time of the algorithm will be \(\leq 2 \lg n \cdot K\), where \(K\) is \(>\) the time required to perform the merge-operations described above for internal nodes. The interesting aspect of this algorithm is that \(K\) is bounded by a constant, so the overall execution-time is \(O(\lg n)\).

3. The algorithm correctly sorts the input-data. This is because the sorted sequences of data are merged with each other as they are copied up the tree to the root.

The remainder of this section will be spent proving that the algorithm executes in the stated time. The only thing that must be proved is that the merge-operations can be carried out in constant time. We will need several definitions:

Definition 3.9. Rank-terminology.

1. Let \(e, f, \) and \(g\) be three data-items, with \(e < g\). \(f\) is between \(e\) and \(g\) if \(e < f < g\). In this case \(e\) and \(g\) straddle \(f\).

2. Let \(L\) and \(J\) be sorted lists. Let \(f\) be an item in \(J\), and let \(e\) and \(g\) be two adjacent items in \(L\) that straddle \(f\) (in some cases, we assume \(e = -\infty\) or \(g = \infty\). With this in mind, the rank of \(f\) in \(L\) is defined to be the rank of \(e\) in \(L\). If \(e = -\infty\), the rank of \(f\) is defined to be 0.

3. If \(e \in L\) and \(g\) is the next larger item then we define \([e, g)\) to be the interval induced by \(e\). It is possible for \(e = -\infty\) and \(g = \infty\).

4. If \(c\) is a positive integer, \(L\) is a \(c\)-cover of \(J\), if each interval induced by an item in \(L\) contains at most \(c\) items from \(J\). This implies that, if we merge \(L\) and \(J\), at most \(c\) items from \(J\) will ever get merged between any two items of \(L\).

5. \(L\) is defined to be ranked in \(J\), denoted \(L \rightarrow J\), if for each item in \(L\), we know its rank in \(J\). This basically means that we know where each item in \(L\) would go if we decided to merge \(L\) and \(J\).

6. Two lists \(L\) and \(J\) are defined to be cross ranked, denoted \(L \leftrightarrow J\), if \(L \rightarrow J\) and \(J \rightarrow L\). When two lists are cross-ranked it is very easy to merge them in constant time: the rank of an element in the result of merging the two lists is the sum of its rank in each of the lists.

In order to prove that the merge can be performed in constant time, we will need to keep track of \(\text{OLDSUP}(v)\) — this is the \(\text{SUP}(v)\) in the previous phase of the algorithm. \(\text{NEWUP}(v)\) is the value of \(\text{UP}(v)\) in the next phase of the algorithm. The main statement that will imply that the merge-operations can be performed in constant time is:

In each phase of the algorithm, and for each vertex, \(u\) of the graph \(\text{OLDSUP}(u)\) is a 3-cover of \(\text{SUP}(u)\). This and the fact that \(\text{UP}(u)\) is the result of merging \(\text{OLDSUP}(v)\) and \(\text{OLDSUP}(w)\) (where \(v\) and \(w\) are the children of \(u\)) will imply that \(\text{UP}(u)\) is a 3-cover of \(\text{SUP}(v)\) and \(\text{SUP}(w)\).

Now we describe the merging-operations. We assume that:

1. \(\text{UP}(u) \rightarrow \text{SUP}(v)\) and \(\text{UP}(u) \rightarrow \text{SUP}(w)\) are given at the start of the merge-operation.
2. The notation \(a \cup b \) means “the result of merging lists \(a \) and \(b \).”

Algorithm 3.10. Cole Merge Algorithm — CREW version

We perform the merge in two phases:

Phase 1. In this phase we compute \(\text{NEWUP}(u) \). Let \(e \) be an item in \(\text{SUP}(v) \); the rank of \(e \) in \(\text{NEWUP}(u) = \text{SUP}(v) \cup \text{SUP}(w) \) is equal to the sum of its ranks in \(\text{SUP}(v) \) and \(\text{SUP}(w) \). We must, consequently, cross-rank \(\text{SUP}(v) \) and \(\text{SUP}(w) \), by a procedure described below. Having done that, for each item \(e \in \text{SUP}(v) \), we know:

1. Its rank in \(\text{NEWUP}(u) \);
2. The two items \(d, f \in \text{SUP}(w) \) that straddle \(e \).
3. We know the ranks of \(d \) and \(f \) in \(\text{NEWUP}(u) \).

For each item in \(\text{NEWUP}(u) \) we record:

- whether it came from \(\text{SUP}(v) \) or \(\text{SUP}(w) \);
- the ranks of the straddling items from the other set.

This completes the description of phase 1. We must still describe how to cross-rank \(\text{SUP}(v) \) and \(\text{SUP}(w) \):

Step 1 For each item in \(\text{SUP}(v) \), we compute its rank in \(\text{UP}(u) \). This is performed by the processors associated with the items in \(\text{UP}(u) \) as follows:

If \(y \in \text{UP}(u) \), let \(I(y) \) be the interval induced by \(y \) in \(\text{UP}(u) \) — recall that this is the interval from \(y \) to the next higher element of \(\text{UP}(u) \). Next consider the items of \(\text{SUP}(v) \) contained in \(I(y) \) — there are at most 3 such items, by the 3-cover property. The processor associated with \(y \) assigns ranks to each of these 3 elements — this step, consequently, requires constant time (3 units of the time required to assign ranks).

Step 2 For each item \(e \in \text{SUP}(v) \), we compute its rank on \(\text{SUP}(w) \). This is half of the effort in cross-ranking \(\text{SUP}(v) \) and \(\text{SUP}(w) \). We determine the two items \(d, f \in \text{UP}(u) \) that straddle \(e \), using the rank computed in the step immediately above. Suppose that \(d \) and \(f \) have ranks \(r \) and \(t \), respectively, in \(\text{UP}(u) \) — we can determine this by the information that was given at the start of the merge-operation. See figure 6.45. Then:
all items of rank $\leq r$ are smaller than item e — since all inputs are distinct (one of the hypotheses of this sorting algorithm).

• all items of rank $> t$ are larger than e.

The only items about which there is any question are those with ranks between r and t. The 3-cover property implies that there are at most 3 such items. Computing the rank of e and these (≤ 3) other items can be computed with at most 2 comparisons.

The cross-ranking of $\text{SUP}(v)$ and $\text{SUP}(w)$ is completed by running these last two steps with v and w interchanged. Once we know these ranks, we can perform a parallel move-operation to perform the merge (remember that we are using a PRAM computer).

We have made essential use of rankings $\text{UP}(u) \rightarrow \text{SUP}(v)$ and $\text{UP}(u) \rightarrow \text{SUP}(w)$. In order to be able to continue the sorting algorithm in later stages, we must be able to provide this kind of information for later merge-operations. This is phase 2 of the merge:

Phase 2. We will compute rankings $\text{NEWUP}(U) \rightarrow \text{NEWSUP}(v)$ and $\text{NEWUP}(u) \rightarrow \text{NEWSUP}(w)$. For each item $e \in \text{NEWUP}(U)$ we will compute its rank in $\text{NEWSUP}(v)$ — the corresponding computation for $\text{NEWSUP}(w)$ is entirely analogous. We start by noting:

• Given the ranks for an item from $\text{UP}(u)$ in both $\text{SUP}(v)$ and $\text{SUP}(w)$, we can deduce the rank of this item in $\text{NEWUP}(u) = \text{SUP}(v) \cup \text{SUP}(w)$ — this new rank is just the sum of the old ranks.

• Similarly, we obtain the ranks for items from $\text{UP}(v)$ in $\text{NEWUP}(v)$.

• This yields the ranks of items from $\text{SUP}(v)$ in $\text{NEWSUP}(v)$ — since each item in $\text{SUP}(v)$ came from $\text{UP}(v)$, and $\text{NEWSUP}(v)$ comprises every fourth item in $\text{NEWUP}(v)$.

It follows that, for every item $e \in \text{NEWUP}(u)$ that came from $\text{SUP}(v)$, we know its rank in $\text{NEWSUP}(v)$. It remains to compute this rank for items that came from $\text{SUP}(w)$. Recall that for each item $e \in \text{SUP}(w)$ we computed the straddling items d and f from $\text{SUP}(v)$ (in phase 1 above) — see figure 6.46.

We know the ranks r and t of d and f, respectively, in $\text{NEWSUP}(v)$. Every item of rank $\leq r$ in $\text{NEWSUP}(v)$ is smaller than e, while every item of rank $> t$ is larger than e. Thus the only items about which there is any doubt concerning their size relative to e are items with rank between r and t. But the 3-cover property
implies that there are at most 3 such items. The relative order of e and these (at most) three items can be determined be means of at most two comparisons. This ranking step can, consequently, be done in constant time.

We still haven’t proved that it works. We have to prove the 3-cover property that was used throughout the algorithm.

Lemma 3.11. Let \(k \geq 1 \). In each iteration, any \(k \) adjacent intervals in \(\text{SUP}(u) \) contain at most \(2k + 1 \) items from \(\text{NEWSUP}(u) \).

Proof. We prove this by induction on the number of an iteration. The statement of the lemma is true initially because:

1. When \(\text{SUP}(u) \) is empty, \(\text{NEWSUP}(u) \) contains at most one item.
2. The first time \(\text{SUP}(u) \) is nonempty, it contains one item and \(\text{NEWSUP}(u) \) contains at most two items.

Now we give the induction step: We want to prove that \(k \) adjacent intervals in \(\text{SUP}(u) \) contain at most \(2k + 1 \) items from \(\text{NEWSUP}(u) \), assuming that the result is true in the previous iteration — i.e., for all nodes \(u' \) and for all \(k' \geq 1 \), \(k' \) intervals in \(\text{OLDSUP}(u') \) contain at most \(2k' + 1 \) items from \(\text{SUP}(u') \).

We first suppose that \(u \) is not external at the start of the current iteration — see figure 6.47.

Consider a sequence of \(k \) adjacent intervals in \(\text{SUP}(u) \) — they cover the same range as some sequence of \(4k \) adjacent intervals in \(\text{UP}(u) \). Recall that \(\text{UP}(u) = \text{OLDSUP}(v) \cup \text{OLDSUP}(w) \). The \(4k \) intervals in \(\text{UP}(u) \) overlap some \(k \geq 1 \) adjacent intervals in \(\text{OLDSUP}(v) \) and some \(k \geq 1 \) adjacent intervals in \(\text{OLDSUP}(w) \), with \(h + j = 4k + 1 \). The \(h \) intervals in \(\text{OLDSUP}(v) \) contain at most \(2h + 1 \) items in \(\text{SUP}(v) \), by the inductive hypothesis, and similarly, the \(j \) intervals in \(\text{OLDSUP}(w) \) contain at most \(2j + 1 \) items from \(\text{SUP}(w) \). Recall that \(\text{NEWUP}(u) = \text{SUP}(v) \cup \text{SUP}(w) \). It follows that the \(4k \) intervals in \(\text{UP}(u) \) contain at most \(2h + 2j + 2 = 8k + 4 \) items from \(\text{NEWUP}(u) \). But \(\text{NEWSUP}(u) \) is formed by selecting every fourth item in \(\text{NEWUP}(u) \) — so that the \(k \) adjacent intervals in \(\text{SUP}(u) \) contain at most \(2k + 1 \) items from \(\text{NEWSUP}(u) \).

At this point we are almost done. We must still prove the lemma for the first and second iterations in which \(u \) is external. In the third iteration after \(u \) becomes external, there are no \(\text{NEWUP}(u) \) and \(\text{NEWSUP}(u) \) arrays.
Here we can make the following stronger claim involving the relationship between \(\text{SUP}(u) \) and \(\text{NEWSUP}(u) \):

\[
\text{k adjacent intervals in SUP}(u) \text{ contain exactly } 2k \text{ items from }
\text{NEWSUP}(u) \text{ and every item in SUP}(u) \text{ occurs in NEWSUP}(u).
\]

Proof of claim: Consider the first iteration in which \(u \) is external. \(\text{SUP}(u) \) is made up of every fourth item in \(\text{UP}(u) = L(u) \), and \(\text{NEWSUP}(u) \) contains every second item in \(\text{UP}(u) \). The claim is clearly true in this iteration. A similar argument proves the claim in the following iteration. \(\Box \)

Corollary 3.12. For all vertices \(u \) in the sorting-tree, \(\text{SUP}(u) \) is a 3-cover of \(\text{NEWSUP}(u) \).

Proof. Set \(k = 1 \) in 3.11 above. \(\Box \)

We have seen that the algorithm executes in \(O(\lg n) \) time. A detailed analysis of the algorithm shows that it performs \((15/2)n \lg n \) comparisons. This analysis also shows that the number of active elements in all of the lists in the tree in which the sorting takes place is bounded by \(O(n) \), so that the algorithm requires \(O(n) \) processors.

3.7.2. Example. We will conclude this section with an example. Suppose our initial input-data is the 8 numbers \{6, 1, 5, 3, 2, 0, 7, 4\}. We put these numbers at the leaves of a complete binary tree — see figure 6.48.

In the first step, the leaf-vertices are external and all other nodes are internal, in the terminology of 3.7 on page 350, and \(\text{UP} \) will equal to the data stored there. In the notation of 3.8 on page 351, the leaf-vertices have \(\text{e}_\text{age} \) equal to 1. In the first step of computation, \(\text{SUP} \) of the leaf vertices are set to every 4\(^{th} \) value in \(\text{UP} \) of that vertex — this clearly has no effect. Furthermore, nothing significant happens at higher levels of the tree.

In step 2 of the algorithm, nothing happens either, since the \(\text{SUP} \)-lists of the leaf vertices are set to every second element of the \(\text{UP} \)-lists.

In step 3 of the algorithm \(\text{e}_\text{age} \) is 3 and \(\text{SUP} \) of each leaf vertex is set to the corresponding \(\text{UP} \) set. Nothing happens at higher levels of the tree. Since the \(\text{e}_\text{age} \) of leaf vertices is \(\geq 4 \) in the remaining steps, no further activity takes place at the leaf vertices after this step.

In step 4 the \(\text{UP} \) lists of the vertices one level above the leaf-vertices are given non-null values. These vertices will be external in the next step with \(\text{e}_\text{age} \) equal to 1. Our tree is changed to the one in figure 6.49.
In step 5 the only vertices in which any significant activity takes place are those one level above the leaf-nodes. These vertices are external with \textit{e_age} equal to 1. No assignment to the SUP lists occurs in this step, due to the rules in 3.8 on page 351.

In step 6 the active vertices from step 5 have assignments made to the SUP lists, the resulting tree appears in figure fig:colesortexampd3.

The leaf-vertices have significant data stored in them, but do not participate in future phases of the algorithm in any significant way, so we mark them “Inactive”. In step 8 we assign data to the UP lists one level higher, and we expand the SUP lists in the next lower level to get the sort-tree in figure 6.51.

In step 9, we expand the UP lists of the vertices one level below the top. We are only merging a few more data-items into lists that are already sorted. In addition, the data we are merging into the UP lists are “well-ranked” with respect to the data already present. Here the term “well-ranked” means that UP is a 3-cover of the SUP lists of the child vertices — see line 3 of 3.9 on page 352. These facts imply that the merging operation can be carried out in constant time. We get the sort-tree in figure 6.52.

In step 10, we expand the SUP lists (in constant time, making use of the fact that the UP lists are a 3-cover of them), and put some elements into the UP lists of the root-vertex. The result is the sort-tree in figure 6.53.

In step 11, we:
- Put elements into the SUP list of the root.
- Merge more elements into the UP list of the root.
- Expand the SUP lists of the vertices below the root.

The result is the sort-tree in figure 6.54.

In step 13, we essentially complete the sorting operation — the resulting sort-tree is shown in figure 6.55.

The next step would be to update the SUP list of the root. It is superfluous.
FIGURE 6.50. The sort-tree at the end of step 6.

FIGURE 6.51. Sort-tree at the end of step 8.
UP = \{1, 3, 5, 6\}, SUP = \{1\}

UP = \{0, 2, 4, 7\}, SUP = \{0\}

Figure 6.52. The sort-tree at the end of step 9.

UP = \{0, 1\}, SUP = \{1, 5\}

UP = \{0, 2, 4, 7\}, SUP = \{0, 4\}

Figure 6.53. The sort-tree at the end of step 10.
Figure 6.54. The sort-tree at the end of step 11.

Figure 6.55. Sort-tree at the end of the Cole sorting algorithm.
3.7.3. The Cole Sorting Algorithm — EREW version. Now we will consider a version of the Cole sorting algorithm that runs on an EREW computer in the same asymptotic time as the one above (the constant of proportionality is larger, however). The basic sorting algorithm is almost the same as in the CREW case. The only part of the algorithm that is not EREW (and must be radically modified) is the merging operations. We will present an EREW version of the merging algorithm, described in 3.10 on page 353.

We will need to store some additional information in each node of the sorting-tree:

Algorithm 3.13. Cole Sorting Algorithm — EREW version This is the same as the CREW version 3.8 (on page 351) except that we maintain lists (or variable-sized arrays) UP(v), and DOWN(v), SUP(v), and SDOWN(v) at each node, v, of the sorting tree. The SDOWN(v)-list is composed of every fourth item of the DOWN(v)-list.

Consider a small portion of the sorting-tree, as depicted in figure 6.56.

At node v, in each step of the sorting algorithm, we:
1. Form the arrays SUP(v) and SDOWN(v);
2. Compute NEWUP(v) = SUP(x) ∪ SUP(y). Use the merge algorithm 3.14 described below.
3. Compute NEWDOWN(v) = SUP(w) ∪ SDOWN(u). Use the merge algorithm 3.14 described below.

In addition, we maintain the following arrays in order to perform the merge-operations in constant time:
- UP(v) ∪ SDOWN(v);
- SUP(v) ∪ SDOWN(v);

We have omitted many details in this description — the EREW version of the merge-operation requires many more cross-rankings of lists than are depicted here. The remaining details of the algorithm will be given below, on page 363.
Here SDOWN(v) is a 3-cover of NEWSDOWN(v) — the proof of this is identical to the proof of the 3-cover property of the SUP arrays in 3.12 on page 356.

Algorithm 3.14. Cole Merging Algorithm — EREW Case Assume that J and K are two sorted arrays of distinct items and J and K have no items in common. It is possible to compute $J \leftrightarrow K$ in constant time (and, therefore, also $L = J \cup K$), given the following arrays and rankings:

1. Arrays SK and SJ that are 3-covers of J and K, respectively;
2. $SJ \leftrightarrow SK$ — this amounts to knowing $SL = SJ \cup SK$;
3. $SK \rightarrow J$ and $SJ \rightarrow K$;
4. $SJ \rightarrow J$ and $SK \rightarrow K$.

These input rankings and arrays are depicted in figure 6.57.

This merge algorithm will also compute $SL \rightarrow L$, where $L = J \cup K$.

The algorithm is based upon the observation that the interval I between two adjacent items e and f, from $SL = SJ \cup SK$, contains at most three items from each of J and K. In order to cross-rank J and K, it suffices, for each such interval, to determine the relative order of the (at most) six items it contains. To carry out this procedure, we associate one processor with each interval in the array SL. The number of intervals is one larger than the number of items in the array SL. The ranking takes place in two steps:

1. We identify the two sets of (at most) three items contained in I. These are the items straddled by e and f. If e is in $\{SJ\}$, we determine the leftmost item of these (at most) three items using $\{SJ \rightarrow J\}$; the rightmost item is obtained in the same way. The (at most) three items from K are computed analogously.
2. For each interval in SL, we perform at most five comparisons to compute the rankings of the at most three items from each of J and K.

We compute $SL \rightarrow L$ as follows:

For each item $e \in SL$, we simply add its ranks in J and K, which yields its rank in L. These ranks are obtained from

$$\begin{cases}
SJ \rightarrow J & \text{if } e \text{ is from } SJ \\
SK \rightarrow J & \text{if } e \text{ is from } SK
\end{cases}$$

This completes the description of the merging procedure. It is clear, from its hypotheses, that a considerable amount of information is required in each step of
3.13 in order to carry out the merges described there. In fact, at each step of 3.13, we will need the following rankings:

3.15. **Input Rankings**

1. \(\text{OLDSUP}(x) \leftrightarrow \text{OLDSUP}(y) \)
2. \(\text{OLDSUP}(v) \rightarrow \text{SUP}(v) \);
3. \(\text{OLDSUP}(w) \leftrightarrow \text{OLDSDOWN}(u) \);
4. \(\text{OLDSDOWN}(v) \rightarrow \text{SDOWN}(v) \);
5. \(\text{SUP}(v) \leftrightarrow \text{SDOWN}(v) \);
6. \(\text{UP}(v) \leftrightarrow \text{SDOWN}(v) \);
7. \(\text{SUP}(v) \leftrightarrow \text{DOWN}(v) \);
8. Since \(\text{DOWN}(v) = \text{OLDSUP}(w) \cup \text{OLDSDOWN}(u) \), and since we have the cross-ranking in line 7, we get \(\text{OLDSUP}(w) \rightarrow \text{SUP}(v) \), and
9. \(\text{OLDSDOWN}(u) \rightarrow \text{SUP}(v) \).
10. Since \(\text{UP}(v) = \text{OLDSUP}(x) \cup \text{OLDSUP}(y) \), and we have the cross-ranking in line 7, we get the rankings \(\text{OLDSUP}(x) \rightarrow \text{SDOWN}(v) \) and \(\text{OLDSUP}(y) \rightarrow \text{SDOWN}(v) \).

The remainder of the sorting algorithm involves five more steps, that each apply the merge-algorithm 3.14 to compute the information in the list above. The following facts should be kept in mind during these five merge-operations:

The node \(v \) is the current node of the graph. All of the merge-operations are being carried out in order to compute information for node \(v \). Node \(v \) is surrounded by other nodes that contribute information for the merge-operations — see figure 6.56 on page 361.

Each merge-operation requires four lists with five-rankings between them as input — we represent these by a “template”, as in figure 6.57 on page 362.

Step 1: We compute the rankings in lines 1 and 2 in the list above. We begin by computing \(\text{SUP}(x) \leftrightarrow \text{SUP}(y) \). This computation also gives the rankings \(\text{UP}(v) \rightarrow \text{NEWUP}(v) \) and \(\text{SUP}(v) \rightarrow \text{NEWSUP}(v) \). This is a straightforward application of the merge-algorithm 3.14, using the following input-information (that we already have) and template 6.58:

- \(\text{OLDSUP}(x) \leftrightarrow \text{OLDSUP}(y) \), from line 1 in the list above, at node \(v \).
- \(\text{OLDSUP}(x) \leftrightarrow \text{SUP}(y) \), from line 8 at node \(y \).
- \(\text{OLDSUP}(y) \rightarrow \text{SUP}(x) \), from line 8 at node \(x \).
- \(\text{OLDSUP}(x) \rightarrow \text{SUP}(x) \), from line 2 at node \(x \).
- \(\text{OLDSUP}(y) \rightarrow \text{SUP}(y) \), from line 2 at node \(y \).
Here, we have made essential use of knowledge of the rankings in 3.15 at nodes other than the current node.

Step 2: Compute \(\text{SUP}(w) \leftrightarrow \text{SDOWN}(u) \), giving rise to \(\text{NEWDOWN}(v) \), \(\text{DOWN}(v) \rightarrow \text{NEWDOWN}(v) \), and \(\text{DOWN}(v) \rightarrow \text{NEWSDOWN}(v) \). Again, we perform the merge-algorithm 3.14 using the (known) data and template 6.59:

1. \(\text{OLDSDOWN}(u) \rightarrow \text{SDOWN}(u) \), from line 4 of statement 3.15 at node \(u \).
2. \(\text{OLDSDOWN}(u) \rightarrow \text{SUP}(w) \), from line 9 of statement 3.15 at node \(w \).
3. \(\text{OLDSDOWN}(u) \rightarrow \text{SDOWN}(u) \), from line 4 of statement 3.15 at node \(u \).

Step 3: Compute \(\text{NEWUP}(v) \leftrightarrow \text{SDOWN}(v) \). As before, we have the following input-information for algorithm 3.14 on page 362 and template 6.60:

1. \(\text{SUP}(v) \leftrightarrow \text{SDOWN}(v) \), from line 5 of statement 3.15 at node \(v \).
2. \(\text{SUP}(v) \leftrightarrow \text{NEWDOWN}(v) \), and, therefore, \(\text{SUP}(v) \rightarrow \text{NEWSDOWN}(v) \).
 This is computed from
 a. \(\text{SUP}(v) \leftrightarrow \text{SUP}(w) \), at step 1 and node \(u \), and
 b. \(\text{SUP}(v) \leftrightarrow \text{SDOWN}(u) \), from step 2 at node \(w \).
 These rankings give rise to \(\text{SUP}(v) \leftrightarrow [\text{SUP}(w) \cup \text{SDOWN}(u)] = \text{SUP}(v) \leftrightarrow \text{SUP}(w) \).
3. \(\text{NEWUP}(v) \leftrightarrow \text{SDOWN}(v) \), and, therefore, \(\text{SDOWN}(v) \rightarrow \text{NEWUP}(v) \).
 This is computed from
 a. \(\text{SUP}(x) \leftrightarrow \text{SDOWN}(v) \), at step 2 and node \(y \), and
 b. \(\text{SUP}(y) \leftrightarrow \text{SDOWN}(v) \), from step 2 at node \(x \).
 These rankings give rise to \([\text{SUP}(x) \cup \text{SUP}(y)] \leftrightarrow \text{SDOWN}(v) = \text{NEWUP}(v) \leftrightarrow \text{SDOWN}(v) \).
4. \(\text{SUP}(v) \rightarrow \text{NEWSUP}(v) \), from step 1 at node \(v \).
5. \(\text{SDOWN}(v) \rightarrow \text{NEWSDOWN}(v) \) from step 3 at node \(v \).
Step 4: Compute \(\text{NEWUP}(v) \leftrightarrow \text{NEWSDOWN}(v) \). This is an application of the merge-algorithm 3.14 on page 362 using the (known) input-data and template 6.61:

- \(\text{NEWSUP}(v) \leftrightarrow \text{SDOWN}(v) \), from step 3.3 above, at node \(v \).
- \(\text{SDOWN}(v) \rightarrow \text{NEWUP}(v) \), from step 3.3 above, at node \(v \).
- \(\text{NEWSUP}(v) \rightarrow \text{NEWSDOWN}(v) \), from step 3 at node \(v \).
- \(\text{NEWSUP}(v) \rightarrow \text{NEWUP}(v) \).
- \(\text{SDOWN}(v) \rightarrow \text{NEWSDOWN}(v) \), from step 2 at node \(v \).

Step 5: Compute \(\text{NEWSUP}(v) \leftrightarrow \text{NEWDOWN}(v) \). We have the input information to the merge algorithm and template 6.62:

- \(\text{SUP}(v) \leftrightarrow \text{NEWDOWN}(v) \), from step 3.2 above, applied to node \(v \).
- \(\text{SUP}(v) \rightarrow \text{NEWDOWN}(v) \), from step 3.2 above, applied to node \(v \).
- \(\text{NEWSDOWN}(v) \rightarrow \text{NEWSUP}(v) \), from step 3 at node \(v \).
- \(\text{SUP}(v) \rightarrow \text{NEWSUP}(v) \), from step 1 at node \(v \).
- \(\text{NEWSDOWN}(v) \rightarrow \text{NEWDOWN}(v) \).

The Ajtai, Komlós, Szemerédi Sorting Network

In this section we will present an asymptotically optimal sorting algorithm developed by Ajtai, Komlós, Szemerédi. It differs from the Cole sorting algorithm of the previous section in that:

- it is a sorting network. Consequently, it could (at least in principle) be used as a substitute for the Batcher sort in the simulation-algorithms in chapter 2.
- it is not uniform. This means that, given a value of \(n \), we can construct (with a great deal of effort) a sorting network with \(O(n \log n) \) comparators.
and with depth $O(\log n)$. Nevertheless, we don’t have an $O(\log n)$-time sorting algorithm in the sense of the Cole sorting algorithm. The complexity-parameter, n, cannot be regarded as one of the inputs to the sorting algorithm. In other words, we have a different algorithm for each value of n.

As remarked above, this algorithm uses $O(n)$ processors and executes in $O(\log n)$ time. Unfortunately, the constant factor in this $O(\log n)$ may well turn out to be very large. It turns out that this constant depends upon knowledge of a certain combinatorial construct known as an expander graph. The only known explicit constructions of these graphs give rise to very large graphs (i.e., $\approx 2^{100}$ vertices), which turn out to imply a very large constant factor in the algorithm. Recent results suggest ways of reducing this constant considerably — see [107].

On the other hand, there is a probabilistic argument to indicate that these known constructions are extraordinarily bad, in the sense that there are many known “small” expander graphs. This is an area in which a great deal more research needs to be done. See §3.9 for a discussion of these issues.

With all of these facts in mind, we will regard this algorithm as essentially a theoretical result — it proves that a sorting network with the stated properties exists.

Definition 3.16.

1. Given a graph $G = (V, E)$, and a set, S, of vertices $\Gamma(S)$ is defined to be the set of neighbors of S — i.e., it is the set of vertices defined by:
 $$ z \in \Gamma(S) \iff \exists x \in S \text{ such that } (z, e) \in E $$

2. A bipartite graph (see definition 5.8 on page 90 and figure 3.9 on page 91) $G(V_1, V_2, E)$, with $|V_1| = |V_2| = n$ is called an expander graph with parameters (λ, α, μ) if
 - for any set $A \subset V_1$ such that $|A| \leq \alpha n$ we have $|\Gamma(A)| \geq \lambda |A|$
 - The maximum number of edges incident upon any vertex is $\leq \mu$

In § 5 in chapter 3, expander graphs were used with $\alpha = n/(2c - 1)$, $\lambda = (2c - 1)/b$, $\mu = 2c - 1$, in the notation of lemma 5.9 on page 90. That result also gives a probabilistic proof of the existence of expander graphs, since it shows that sufficiently large random graphs have a nonvanishing probability of being expander graphs.

Our algorithm requires that we have expander-graphs with certain parameters to be given at the outset. We will also need the concept of a 1-factor of a graph:

Definition 3.17. Let $G = (V, E)$ be a graph. A 1-factor of G is a set $S = \{e_1, \ldots, e_k\}$ of disjoint edges that span the graph (regarded as a subgraph).

Recall that a subgraph of a graph spans it if all the vertices of the containing graph are also in the subgraph. It is not hard to see that a graph that has a 1-factor must have an even number of vertices (since each edge in the 1-factor has two end-vertices). A 1-factor of a graph can also be called a perfect matching of the graph. Here is an example. Figure 6.63 shows a graph with a few of its 1-factors.

We will need an expander graph with many 1-factors. The question of whether a graph has even one 1-factor is a nontrivial one — for instance it is clear that any graph with an odd number of vertices has no 1-factor.\(^\text{15}\) We can ensure that

\(^{15}\)Since each edge has two ends.
this property exists by construction — we do this by forming the union of many 1-factors on the same set of vertices.

Section 3.9 discusses some of the probabilistic arguments that can be used to study these random bipartite graphs. Counting arguments like that used in lemma 5.9 on page 90 show that there exists an expander graph with parameters \((2, 1/3, 8)\). In fact, counting arguments show that a bipartite graph that is the union of \(\mu\) random 1-factors is probably an expander graph with parameters \((\lambda, 1/(\lambda + 1), \mu)\) if only

\[
\mu \geq 2\lambda(\ln(\lambda) + 1) + 1 - 2 + \frac{\ln(\lambda)}{3\lambda} + O(\lambda^{-3})
\]

— see 3.38 on page 382 for the precise statement. Such a graph has precisely \(\mu\) edges incident upon each vertex. A random bipartite 1-factor on the vertex-sets \(V_1\) and \(V_2\), with \(|V_1| = |V_2| = m\) is easily specified by giving a random permutation on \(m\) objects — say, \(\sigma\). We simply connect the \(i\)th vertex in \(V_1\) to the \(\sigma(i)\)th vertex of \(V_2\).

We will, consequently, assume that our expander-graphs with parameters \((\lambda, \alpha, \mu)\) has \(\mu\) distinct 1-factors.

The idea of this algorithm (in its crudest form) is as follows:

Assume that we have \(n\) numbers stored in \(n\) storage locations and \(cn\) processors, where each processor is associated with 2 of the storage locations, and \(c\) is a constant. Now in \(c \lg n\) parallel steps, each involving \(n\) of the processors the following operation is carried out:

Each processor compares the numbers in the two storage locations it can access and interchanges them if they are out of sequence.

It turns out that different sets of \(n\) processors must be used in different phases of the algorithm so that we ultimately need \(cn\) processors. If we think of these processors as being connected together in a network-computer (i.e., like the butterfly computer, or the shuffle-exchange computer), we get a computer with \(cn\) processors and \(n\) distinct blocks of RAM.
A SURVEY OF SYMBOLIC ALGORITHMS

Each block of RAM must be shared by c processors. Such a network computer can, using the Ajtai, Komlós, Szemerédi sorting algorithm, simulate a PRAM computer with a time-degradation factor of $c \log n$ rather than the factor of $O(\log^2 n)$ that one gets using the Batcher Sorting algorithm (see chapter 2, § 2).

Throughout this algorithm we will assume that ϵ', ϵ, A, and c are four numbers, such that $\epsilon' \ll \epsilon \ll 1 \ll c$ and $1 \ll A$. Here \ll means “sufficiently smaller than”. It is known that

- The algorithm works for any sufficiently small value of ϵ, and any smaller values of ϵ
- Given any sufficiently small value of ϵ, there exists some value of $\epsilon' < \frac{\epsilon}{\log(1/\epsilon)}$ that makes the algorithm work, and the algorithm works for any smaller values of ϵ.
- c must be large enough that there exist expander-graphs of any size with the parameters $((1 - \epsilon')/\epsilon', \epsilon', c)$.
- A must be $> e^{-1/4}$.

In [3], Ajtai, Komlós, Szemerédi suggest the value of 10^{-15} for ϵ', 10^{-9} for ϵ, and 10^{-6} for η. We will also assume given an expander graph with parameters $((1 - \epsilon')/\epsilon', \epsilon', c)$.

Now we will present the algorithm in somewhat more detail. We divide it into three sub-algorithms:

Algorithm 3.18. ϵ'-halving In a fixed finite time an ϵ'-halver on m registers puts the lower half of the m numbers in the lower half of the registers with at most ϵm errors. In fact, for all k, $1 \leq k \leq m/2$, the first k numbers are in the lower half of the registers with at most ϵk errors (and similarly for the top k numbers). This is the step that makes use of Expander Graphs. Our expander graph, $G(V_1, V_2, E)$, has a total of m vertices and parameters $((1 - \epsilon')/\epsilon', \epsilon', c)$. The sets V_1 and V_2 are each of size $m/2$ and we associate V_1 with the lower half of the m registers, and V_2 with the upper half. See figure 6.64. We decompose $G(V_1, V_2, E)$ into c different 1-factors: $\{F_1, \ldots, F_c\}$ for $i = 1, \ldots, c$.

for all edges $e \in F_j$, do in parallel

Compare numbers at the ends of e.
and interchange them if they are out of sequence
endfor

This requires at most c parallel operations.

Note that it is possible to do all of these parallel comparison- and interchange-operations because the edges of a 1-factor are disjoint.

This algorithm bears a striking resemblance to the Halving operation in the Quicksort Algorithm. Unlike that algorithm, however, we do not scan the upper and lower halves of our set of m numbers and make decisions based upon the values we encounter. Instead, we perform a kind of “sloppy” halving operation: we compare (and sort) fixed sequences of elements (determined by 1-factors of the expander-graph) regardless of the values we encounter. Because we have been so sloppy, some large elements may end up in the lower half of the set, and small elements may end up in the upper set. Nevertheless, the combinatorial property of an expander graph guarantees that the number of “errors” in our halving operation will be limited. The following result gives a precise statement of this fact:

PROPPOSITION 3.19. Suppose the set $S = \{a_1, \ldots, a_n\}$ of numbers is the result of performing the ϵ'-halving algorithm described above on some set of n numbers. Then:

- for all $k \leq \lfloor n/2 \rfloor$, $a_i > a_{\lfloor n/2 \rfloor}$ for at most $\epsilon'k$ values of $i \leq k$.
- for all $k > \lfloor n/2 \rfloor$, $a_i \leq a_{\lfloor n/2 \rfloor}$ for at most $\epsilon'(n - k)$ values of $i > k$.

In general, when we prove that this algorithm works, we will assume that the input consists of some permutation of the sequence of numbers $S = \{1, 2, \ldots, n\}$. Since the algorithm as a whole is a sorting network, it suffices to prove that it works for all sequences of 0’s and 1’s (see the discussion of the 0-1 principle on page 19). Clearly, if we prove the algorithm for all permutations of the set S, it will work for all sequences of 0’s and 1’s, and, therefore, for all possible sequences of numbers.

PROOF. This follows directly from the combinatorial definition of an expander graph. Suppose that $Z = \{1, \ldots, k\}$ is a set of numbers embedded in the input somewhere, with the property that more than $\epsilon'k$ elements of Z end up in the upper half of the output of the ϵ'-halving algorithm.

But, if $> \epsilon'k$ elements of Z end up in the upper half of the output, then it follows that $< (1 - \epsilon')k$ elements of Z are left to end up in the lower half of the output.

Then these $\epsilon'k$ elements must be incident upon at least $(1 - \epsilon')k$ elements on the lower half of the output, by the defining property of the $(\epsilon', (1 - \epsilon')/\epsilon', c)$-expander graph used to implement the ϵ'-halving algorithm. Since the number of elements of Z that lies in the lower half of the output is strictly less than $(1 - \epsilon')k$, it follows that one of the elements of Z in the upper-half of the output must be incident upon an element of the lower half of the output that is not in the set Z. But this is a contradiction, since elements of the upper half of the output must be any element of the lower half, that they are incident upon. It is impossible for any element of Z to be larger than any element of the complement of Z — Z was chosen to consist of the smallest numbers. \square

16By the way the ϵ'-halving algorithm works — it has a comparator on each of the edges of the graph.
This result implies that the ϵ'-halving algorithm works with reasonably good accuracy at the ends of the sequence \(\{1, \ldots, n\}\). Most of the errors of the algorithm are concentrated in the middle.

Definition 3.20. Let \(\pi\) be a permutation of the sequence \((1, \ldots, m)\). Let \(S \subseteq (1, \ldots, m)\) be a set of integers. Define:

1. \(\pi S = \{\pi i | i \in S\}\)
2. Given \(\epsilon > 0\)
 \[S^\epsilon = \{1 \leq j \leq m | |j - i| \leq \epsilon m\}\]
3. A permutation \(\pi\) is \(\epsilon\)-nearsorted if
 \[|S - \pi S^\epsilon| < \epsilon |S|\]
 holds for all initial segments \(S = (1, \ldots, k)\) and endsegments \(S = (k, \ldots, m)\), where \(1 \leq k \leq m\).

Proposition 3.21. Suppose \(\pi\) is an \(\epsilon\)-nearsorted permutation. Statement 3 in definition 3.20 implies that:
\[|S - \pi S^\epsilon| < 3\epsilon m\]
holds for all sequences \(S = (a, \ldots, b)\).

Algorithm 3.22. \(\epsilon\)-nearsort This is a kind of approximate sorting algorithm based upon the \(\epsilon\)-halving algorithm mentioned above. It also executes in a fixed finite amount of time that is independent of \(n\). For a given value of \(\epsilon\), it sorts the \(n\) input values into \(n\) storage locations with at most \(\epsilon n\) mistakes. In fact, for every \(k\) such that \(1 \leq k \leq \epsilon n\), the first \(k\) numbers are in the lower \(\epsilon' n\) storage locations with at most \(\epsilon' k\) mistakes. To carry out the nearsort apply an \(\epsilon\)-halver to the whole set of \(n\) numbers, then apply \(\epsilon\)-halvers to the top and bottom half of the result, then to each quarter, eighth, etc, until the pieces each have size \(< \epsilon' n\). (The algorithm executes in constant time because we stop it when the pieces become a fixed fraction of the size of the original set of numbers). It is not hard to see that each piece of size \(w = \epsilon n\) has at most \(\epsilon w\) errors.

The upshot of all of this is that we have an algorithm for approximately sorting \(n\) numbers in constant time. The sorting operation is approximate in the sense that a small fraction of the \(n\) numbers may end up being out of sequence when the algorithm is over.

Note the similarities between the \(\epsilon\)-nearsort algorithm and the quicksort algorithm. The \(\epsilon\)-nearsort algorithm executes in a constant time. Intuition says that, if we can reduce the number of "errors" in the sorting process by a constant factor (of \(\epsilon\)) each time we perform an \(\epsilon\)-nearsort, we may be able to get an exact sorting algorithm by performing an \(\epsilon\)-nearsort \(O(\lg n)\) times. This is the basic idea of the Ajtai, Komlós, Szemerédi sorting algorithm. One potential problem arises in following our intuitive analysis:

Simply applying the \(\epsilon\)-nearsort to the same set of numbers \(O(\lg n)\)
times might not do any good. It may make the "same mistakes" each time we run it.

Something like this turns out to be true — we must use some finesse in repeating the \(\epsilon\)-nearsort algorithm. We use the fact that the \(\epsilon\)-halving algorithm makes fewer mistakes at the ends of the range of numbers it is sorting to get some idea of where the errors will occur in the \(\epsilon\)-nearsort.
The remainder of the Ajtai, Komlós, Szemerédi sorting algorithm consists in applying the ϵ-nearsort to the n numbers in such a way that the "errors" in the sorting operation get corrected. It turns out that this requires that the ϵ'-nearsort operation be carried out $O(\lg n)$ times.

Let $\{m_1, \ldots, m_n\}$ be the memory locations containing the numbers to be sorted. Now the sorting algorithm is divided into $\lg n$ phases, each of which is composed of three smaller steps.

In each of these steps we perform an ϵ-nearsort separately and simultaneously on each set in a partition of the memory-locations.

The procedure for partitioning the registers is somewhat arcane. Although we will give formulas describing these partitions later, it is important to get a somewhat more conceptual mental image of them. We will use a binary tree of depth $\lg n$ as a descriptive device for these partitions. In other words, we don’t actually use a binary tree in the algorithm — we merely perform ϵ-nearsorts on sets of memory-locations $\{m_{i_1}, \ldots, m_{i_s}\}$. Describing these sets, however, is made a little easier if we first consider a binary tree.

Definition 3.23. Consider a complete binary tree of depth $\lg n$. To each vertex, v, there corresponds a natural interval, $I(v)$, of memory locations — regard the vertices at each level as getting equal subdivisions of the n registers. This means that the natural interval of the root is all of the locations from 1 to n. The natural interval of the two children of the root is 1 to $n/2$ for the left child, and $n/2 + 1$ to n for the right child, respectively. See figure 6.65.

In the following description we will assume given a parameter A that satisfies the condition that $A \ll 1/\epsilon$ — $A = 100$, for instance. In general A must satisfy the condition that $\epsilon < A^{-4}$ — see [3], section 8. Although the authors do not state it, it turns out that their term α must be equal to $1/A$.

We will define a set of memory-locations associated to each vertex in the binary tree in phase i — recall that $0 \leq i \leq \lg n$:

Figure 6.65. A complete binary tree of depth 3, with natural intervals

17 The original paper of Ajtai, Komlós, Szemerédi ([4]) simply gave mathematical formulas for the partitions, but people found the formulas hard to understand.
DEFINITION 3.24. The following two steps describe how the memory-locations are distributed among the vertices of the binary tree in phase i of the Ajtai, Komlós, Szemerédi sorting algorithm.

1. **Initial Assignment Step:**
 - Vertices of depth $> i$ have an empty set of memory-locations associated with them.
 - Vertices of depth i have their natural interval of memory-locations associated with them — see 3.23 and figure 6.65.
 - Vertices of depth $j < i$ have a subset of their natural interval associated with them — namely the lower $A^{-(i-j)}$ and upper $A^{-(i-j)}$ portions. In other words, if the natural interval would have had k elements, this vertex has a subset of that natural interval associated with it, composed of terms 1 through $\lfloor A^{-(i-j)}k \rfloor$ and terms $k - \lfloor A^{-(i-j)}k \rfloor$ through k.

2. **Sifting Step:** The partitioning-scheme described above has each memory location associated with several vertices of the binary-tree. Now we cause each memory-location to be associated with a unique vertex via the following rule:
 - Each memory-location only remains associated with the highest (i.e., lowest depth) vertex that step 1 assigned it to. In other words, higher vertices have higher priority in getting memory-locations assigned to them.

Basically the algorithm distributes the memory locations among the vertices of a depth-f subtree in phase t. Now we are in a position to describe the sorting-steps of the algorithm.

EXAMPLE 3.25. Suppose $n = 8$ and $A = 4$. In phase 1, the tree is of depth 0 and we only consider the root, with its natural interval of memory locations 1..8.

In phase 2, the initial assignment step gives rise to the arrangement depicted in figure 6.66.

The sifting step modifies this to get what is depicted in figure 6.67.

In phase 3, the assignment of memory locations filters down to the leaves of the tree. We ultimately get the result that appears in figure 6.68.

DEFINITION 3.26. Define a triangle of the tree to be a parent vertex and its two children. Define the set of memory-locations associated with the triangle of vertices to be the union of the sets of memory-locations associated with its vertices (as described in 3.24 above).
Figure 6.67. Phase 2

Figure 6.68. Phase 3

Zig-step Partition the tree into triangles with apexes at even levels, and perform independent \(\epsilon \)-nearsort operations on the sets of vertices associated with each of these triangles. Each triangle of vertices defines one set in the partition of the memory locations. See figure 6.69.

Zag step Partition the binary tree into triangles with apexes at odd levels and perform the \(\epsilon \)-nearsort to every triangle, as described above. See figure 6.70.

Now we can describe the entire Ajtai, Komlós, and Szemerédi sorting algorithm:

Algorithm 3.27. The Ajtai, Komlós, and Szemerédi sorting algorithm consists in performing the following steps:

for all \(i = 1 \) to \(\log n \) do

Compute the association of memory-locations with vertices

for phase \(i \) in 3.24

Perform:

Zig

Zag

Zig

endfor
Figure 6.69. Partition in the Zig phase

Figure 6.70. Partition in the Zag phase
At the end of this procedure, the number in the original memory-locations will be correctly sorted.

Note that this is a sorting network because:

- Each \(\epsilon' \)-halving operation is given as a network of comparators;
- Each \(\epsilon \)-nearsort can be described in terms of a sorting network, using the description of \(\epsilon' \)-halving operations above.
- Whenever we must perform an \(\epsilon \)-nearsort on disjoint sets of memory-locations, we merely splice suitably-sized copies of the networks described in the previous line, into our whole sorting network.

Also note that this algorithm is far from being uniform. Although the execution of the algorithm doesn’t depend upon the data-values being sorted, it does depend upon the number \(n \) of data-items. We basically have a set of algorithms parameterized by \(n \). The amount of work needed to compute the partitions in 3.24 and 3.26, and the expander-graphs used in the \(\epsilon' \)-halving operations can be very significant.

If we perform all of these preliminary computations\(^{18}\), set up the algorithm, and simply feed data to the resulting sorting network, then the time required for this data to pass through the network (and become sorted) is \(O(\lg n) \).

It is clear that the algorithm executes in \(O(\lg n) \)-time (if we assume that all partitions, expander-graphs, etc. have been pre-computed). We must still prove that it works.

The pattern used to associate the memory-locations with the vertices of the tree is interesting. Most of the memory-locations in phase \(t \) are associated with the vertices of depth \(t \) in the tree, but a few memory-locations remain associated with the higher vertices — namely the lower \(1/A \)th and upper \(1/A \)th (in depth \(t - 1 \)). The purpose of this construction becomes clear now — these small intervals of registers serve to catch the data that belongs outside a given triangle — the \(\epsilon \)-nearsort is sufficiently accurate that there is very little of this data.

Note that, if these small intervals (of size \(1/A \)) did not exist, the activity of the algorithm in phase \(t \) would be entirely concentrated in the vertices of depth \(t \) in the tree. The partitions of the data would be disjoint and remain so throughout the algorithm.

Definition 3.28. We define the wrongness of a memory location \(M \) at time \(t \).

Suppose it is associated to a vertex \(v \). If the data \(x \in M \) lies in the natural interval \(I(v) \) (as defined in 3.23 on page 371) the wrongness \(w(R) \) is defined to be 0. If \(x \) lies in the parent vertex of \(v \) the wrongness is defined to be 1, and so on. Since the natural interval of the root vertex is the entire range of numbers, wrongness is always well-defined.

We will prove that the following inductive hypothesis is satisfied in every phase of the algorithm:

- **At every vertex, \(v \), of the tree, the fraction of memory-locations associated with \(v \) that have wrongness \(\geq r \) is \(\leq (8A)^{-3r} \).**

Note that wrongness starts out being 0 for all memory locations, because they are all initially assigned to the root of the tree. If the inductive hypothesis is still satisfied at the end of the algorithm, all of the data-items will have been correctly sorted.

\(^{18}\)I.e., computation of the partitions in 3.24 and 3.26, and the expander-graphs used in the \(\epsilon' \)-halving operations.
sorted, since each vertex will have only a single data-item in it, so none of the memory-locations associated with a vertex will have any wrongness.

As the time-step advances from t to $t+1$ the wrongness of most of the memory-locations is increased by 1. This is due to the fact that we have redefined the partitions of the memory-locations, and have refined them.

Consider the triangle in figure 6.71, and the memory-locations with wrongness 1:

- If they are associated with vertex Y, they should be associated with vertex Z. This is because the natural interval of vertex X is equal to the unions of the natural intervals of Y and Z. The ZigZagZig operation will move most of them\(^{19}\) into memory-locations associated with vertices X or Z, and decrease wrongness.
- A corresponding argument applies to memory-locations with wrongness of 1 that are associated with Z.

Now consider memory-locations with wrongness $r > 1$ that really belong to lower numbered vertices than X. In the data associated with the triangle X-Y-Z (called the cherry of X, by Ajtai, Komlós, Szemerédi) these memory-locations will form an initial segment, hence will be ϵ-nearsorted more accurately than data in the center of the interval — see line 3 of 3.20 on page 370. They will, consequently, be sorted into one of the initial segments of vertex X — recall how the memory-locations are associated with X, Y, and Z in this step.

Although most of the memory-locations in this phase are associated with Y and Z, $2/A$ of the natural interval of X remains associated with X — the lower $1/A$ of this interval and the upper $1/A$. After it is sorted into the initial segment of vertex X, its wrongness has been decreased by 1.

3.8. Detailed proof of the correctness of the algorithm

Now we will make the heuristic argument at the end of the previous section precise. We will assume that we are in the beginning of phase t of the algorithm. As before, we will assume that the original set of numbers being sorted by the algorithm was initially some random permutation of the numbers $\{1, \ldots, n\}$.

Definition 3.29. We have a partition of $\{1, \ldots, n\}$ into intervals $\{J_1, \ldots, J_m\}$, as defined in 3.24 on page 371. Each such interval is associated with a vertex of the tree and consists of a consecutive sequence of memory-locations $\{x, x+1, \ldots, y-1, y\}$. Note that we can order the intervals and write $J_i < J_k$ if every element of J_i is less than every element of J_k.

\(^{19}\) All but 3ϵ of them, by 3.21 on page 370.
1. If \(i \) is a memory-location, \(R(i) \) denotes its contents. In like manner, if \(J \) is some interval of memory-locations, \(R(J) \) is defined to be the set of values that occur in the memory-locations of \(J \).

2. If \(v \) is a vertex of the tree, the set of memory-locations assigned to \(v \) and its two child-vertices, is called the cherry associated to \(v \).

3. If \(J \) is an interval, the lower section \(L(J) \) is the union of all intervals \(\leq J \) and the upper section \(U(J) \) is the union of all intervals \(\geq J \).

4. Let \(J \) and \(K \) be two intervals with \(K < J \) that are not neighbors in the partition \(\{J_1, \ldots, J_m\} \) (i.e. if \(a \) is the highest element of \(K \), then \(a + 1 \) is strictly less than every element of \(J \)). Then \(d(J, K) \) is defined to be the distance between the vertices of the tree associated with these intervals.

5. Given an interval \(J \) and an integer \(r \geq 0 \), set \(S_1 = \max |R(J) \cap L(K)| \), where the maximum is taken over all intervals \(K, K < J, K \) not adjacent to \(J \) (in the partition of all of the processors, \(\{J_1, \ldots, J_m\} \)), such that \(d(J, K) \geq r \). Set \(S_2 = \max |R(J) \cap U(K)| \), where the maximum is taken over all intervals \(K, K > J, K \) not adjacent to \(J \), such that \(d(J, K) \geq r \). Given these definitions, define

\[
\Delta_r(J) = \frac{\max(J_1, J_2)}{|J|}
\]

This is essentially the proportion of elements of \(J \) whose “wrongness” (as defined in 3.28 on page 375) is \(\geq r \).

6. If \(r \geq 0, \Delta_r = \max_1 \Delta_i(J) \)

7. Given an interval \(J \), define \(\delta(J) = \frac{|R(J) \setminus J|}{|J|} \). Here \(\setminus \) denotes set difference. Define \(\delta = \max_1 \delta(J) \).

This measures the proportion of element that are mis-sorted in any given step of the algorithm.

At the beginning of the first phase of the algorithm, \(\delta = 0 \) and \(\Delta_r = 0 \) for all \(r \geq 0 \). The main result of Ajtai, Komlós, Szemerédi is:

Theorem 3.30. After each phase of the algorithm:

1. \(\Delta_r < A^{-(3r+40)} \), for \(r \geq 1 \).
2. \(\delta < A^{-30} \).

This result implies that the sorting algorithm works because, in the final phase of the algorithm, each interval has a size of 1. The remainder of this section will be spent proving this result.

Lemma 3.31. Suppose \(\Delta_r \) and \(\delta \) are the values of these quantities at the end of a given phase of the algorithm, and \(\Delta'_r \) and \(\delta' \) are the values at the beginning of the next phase after the new partition of the memory-locations is computed. Then

- \(\Delta'_r < 6A\Delta_{r-4}, r \geq 6 \).
- \(\delta' < 6A(\delta + \epsilon) \)

This shows that the initial refinement of the partition of the processors at the beginning of a phase of the algorithm, wrongness is generally increased.

Proof. A new interval \(J' \) is the union of at most three subintervals, each one contained in an old interval \(J \), and \(|J'| > |J|/(2A) \) for any one of them. Each such subinterval is at most two levels away (in the tree) from the old interval, \(J \).
Similarly, a new lower-section \(L(K') \) is contained in an old lower-section \(L(K) \), and \(K' \) is at most two levels away from \(K \) in the tree. This implies that the total distance in the tree is \(\leq 4 \).

Lemma 3.32. Let \(\Delta_r \) and \(\delta \) be the error-measures before a Zig (or a Zag)-step, and let \(\Delta'_r \) and \(\delta' \) be the values after it. If \(\delta < 1/A^2 \), then

- \(\Delta'_r < 8A(\Delta_r + \epsilon \Delta_{r-2}) \), for \(r \geq 3 \);
- \(\Delta'_r < 8A(\Delta_r + \epsilon) \), for \(r = 1, 2 \);
- \(\delta' < 4A(\delta + \epsilon) \)

This implies that the Zig or Zag-steps compensate for the increases in the errors that took place in 3.31.

Proof. Each cherry of the tree (see line 2 of 3.29, on page 377 for the definition) has \(\leq 6 \) intervals associated with it. For any interval \(K \), and any cherry of the tree, the closest (in the sequence of intervals) interval of the cherry that is outside of a lower-section \(L(K) \) is either:

- the closest (on the tree); or
- adjacent to \(K \) (in the list of intervals).

Most elements of \(L(K) \) will be sorted to the left, or to this closest interval. The proportion of elements that are not (the exceptional elements) will be \(< \epsilon \), which is \(< 8A\epsilon \times \) (the size of any interval in the cherry). Since this closest interval (in the list of intervals) is also the closest in the tree, the size of the errors cannot increase except for the exceptional elements — and, for these elements, the errors (measured by levels of the tree) can increase by at most 2.

We assume that \(\delta < 1/A^3 \) to ensure that the extreme interval of the cherry (which represents about \(1/(4A) \) of the entire cherry), can accommodate all of the foreign elements. This extreme interval might be empty. In this case, however, the total number of memory-locations associated with the cherry is \(< 4A \), and \(4A\delta < 1 \) — all memory-locations associated with the cherry contain the proper (sorted) elements so \(R(i) = i \).

Lemma 3.33. If \(\delta < 1/A^4 \), then a Zig-Zag step will change the errors as follows:

- \(\Delta'_r < 64A^2(\Delta_{r+1} + 3\epsilon \Delta_{r+4}) \), \(r \geq 5 \);
- \(\Delta'_r < 64A^2(\Delta_{r+1} + 3\epsilon) \), \(r = 1, 2, 3, 4 \);
- \(\delta' < 16A^2(\delta + 2\epsilon) \)

Proof. This is essentially the same as the proof of the previous lemma. We only make one additional remark:

Given any intervals \(J \) and \(L \) with \(d(J, L) \geq 1 \), if \(J \) was closest to \(L \) (in the sequence of intervals) in the Zig step, then it won’t be the closest (in the tree) in the succeeding Zag-step. This implies that the errors won’t increase (as a result of composing Zig and Zag steps).

We finally have:

Lemma 3.34. After a completed phase of the algorithm, we have:

\[
\delta < 10 \left(A\epsilon + \sum_{r \geq 1} (4A)^r \Delta_r \right) < a^{30}
\]
We consider an interval J and estimate the number $x = |R(J) \cap U(J')|$, where J' is the interval adjacent to J on its left (i.e., $J' < J$). This number is certainly bounded by the number $y = |R(L(J)) \cap U(J')|$, which is equal to $z = |R(U(J')) \cap L(J)|$. The equality $y = z$ implies the identity:

$$y_1 - x_1 = |R(J) \cap (U(J') \setminus J')| - |R(J') \cap (L(J) \setminus J)|$$

$$+ |R(L(J) \setminus J) \cap U(J')| - |R(U(J') \setminus J') \cap L(J)|$$

$$= x_2 - y_2 + x_3 - y_3$$

where $x_1 = |R(J) \cap J'|$ and $y_1 = |R(J') \cap J|$. We have shown that $|y_1 - x_1|$ is small. Assume that the intervals J and J' are in the same cherry for a Zig-step (if they are not in the same cherry in either a Zig or a Zag step, then they belong to different components, and in this case $\delta(J) = 0$). If the bound on the right side of equation (110) is less than A^{-35} after a Zag-step, then the next Zig-step will exchange all foreign elements J and J' for at most:

$$|x_1 - y_1| + 8A(\Delta_1' + \epsilon)|J| < (8A + 20A\Delta_1' + \sum_{r \geq 2} 2^{2r+1} A' \Delta_r')|J| < A^{-30}|J|$$

We have tacitly used the following fact:

For any k, $1 \leq k \leq n$ the numbers

$$|R\{1, \ldots, k\} \cap \{k+1, \ldots, n\}|$$

and

$$|R\{k+1, \ldots, n\} \cap \{1, \ldots, k\}|$$

are monotone decreasing throughout the algorithm.

3.9. Expander Graphs. We will compute the probability that the union of a set of random 1-factors is an expander-graph with parameters $(\lambda, 1/(\lambda + 1), \mu)$. It turns out that it will be easier to compute the probability that such a graph is not an expander graph.

Proposition 3.35. Let n be an integer >1 and let $G(V_1, V_2)$ be the union of μ random bipartite 1-factors on $2n$ elements. Let S be a given set of vertices in V_1 with $|S| = g$. The probability that $|\Gamma(S)|$ is contained in some given set of size β is

$$\left(\frac{\beta!(n-g)!}{n!(\beta-g)!}\right)^\mu$$

(111)
We assume that the sets V_1 and V_2 are ordered. Since the 1-factors are random we can assume, without loss of generality, that

- The set S consists of the first g elements of V_1;
- The target-set (of size β) is the first β elements of V_2 — if this isn’t true, we can compose all of the 1-factors with the permutation that maps S into the first g elements of V_1 and the permutation that maps the target-set into the first β elements of V_2.

Now we consider the probability that a random 1-factor maps S into the first β elements of V_2. The number of ways that it can map S into V_2 (respecting ordering) is

$$\frac{n!}{(n-g)!}$$

Similarly, the number of ways it can map S into the first β elements of V_2 is

$$\frac{\beta!}{(\beta-g)!}$$

It follows that the probability that it maps S into the first β elements of V_2 is

$$\frac{\beta!(n-g)!}{n!(\beta-g)!} = \frac{n!(n-g)!}{n!(\beta-g)!}$$

\[\square\]

Corollary 3.36. Under the hypotheses of the previous result, the probability that there exists a set S of size g such that $|\Gamma(S)| \leq \beta$ is

$$\binom{n}{g} \binom{n}{\beta} \left(\frac{\beta!(n-g)!}{n!(\beta-g)!} \right)^\mu$$

Proof. We have simply multiplied equation (111) by the number of ways of choosing sets of size g and β. \[\square\]

Corollary 3.37. Let λ, n, μ be integers > 1. If $G(V_1, V_2)$ is a bipartite graph composed of μ random 1-factors, and $S \subset V_1$ is of size $n/(\lambda + 1)$, the probability that $|\Gamma(S)| \leq \lambda |S|$ is asymptotic to

$$\left\{ \frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1} (\lambda + 1)^{\lambda+1}} \right\}^{\mu(n-1/2)} \left(\frac{\lambda - 1}{\lambda} \right)^{\mu n}$$

as $n \to \infty$.

Here, the term “asymptotic” means that the ratio of the two quantities approaches 1 as $n \to \infty$.

Proof. If we plug $g = n/(\lambda + 1)$ and $\beta = \lambda n/(\lambda + 1)$ into equation (111), we get

$$\left\{ \left(\frac{\lambda n}{\lambda + 1} \right)! \left(\frac{\lambda n}{\lambda + 1} \right)! \right\}^{\mu}$$

$$\frac{n!(\lambda - 1)}{\lambda + 1}!$$
Now we use Stirling’s Formula for the factorial function — see page 92. It states that \(k! \) is asymptotic to \(k^k \cdot e^{-k} \). The factors of \(e \) cancel out and we get:

\[
\left(\frac{n\lambda}{\lambda+1} \right)^{\frac{2\lambda}{\lambda+1}-1} e^n \left(\frac{n(\lambda+1)}{\lambda+1} \right)^{n-\frac{1}{2}} \left(\frac{n\lambda}{\lambda+1} \right)^{-\frac{n(\lambda+1)}{\lambda+1}+1/2} \]

At this point, all of the factors of \(n \) inside the large brackets cancel out and we get: This proves the result. \(\square \)

We will use this to get a crude estimate of the probability that a graph composed of random 1-factors is an expanding graph.

The result above can be used to estimate the probability that a graph is not an expander. We want to bound from above by a simpler expression. We get the following formula, which is larger than the probability computed in 3.37:

\[
(113) \quad \left\{ \frac{\lambda^{2\lambda}}{(\lambda-1)^{\lambda-1} (\lambda+1)^{\lambda+1}} \right\}^\frac{n}{\lambda+1}
\]

This is an estimate for the probability that a single randomly chosen set has a neighbor-set that is not \(\lambda \) times larger than itself. In order to compute the probability that such a set exists we must form a kind of sum of probabilities over all possible subsets of \(V \) satisfying the size constraint. Strictly speaking, this is not a sum, because we also have to take into account intersections of these sets — to do this computation correctly we would have to use the Mbius Inversion Formula. This leads to a fairly complex expression. Since we are only making a crude estimate of the probability of the existence of such a set, we will simply sum the probabilities. Moreover, we will assume that all of these probabilities are the same. The result will be a quantity that is strictly greater than the true value of the probability.

Now we apply 3.36 and Stirling’s formula to this to get:

\[
\left(\frac{n}{n+1} \right)^{2\lambda n^2} = n \cdot \frac{2\lambda n - \lambda + 1}{\lambda + 1} \cdot (\lambda + 1)^{-2n^2} = n \cdot \frac{\lambda}{\lambda + 1} \cdot (\lambda + 1)^{2n} \cdot \frac{2\lambda n - \lambda + 1}{\lambda + 1} \cdot (\lambda + 1)^{-2n^2} = n \cdot \frac{\lambda}{\lambda + 1} \left\{ (\lambda + 1)^{2(\lambda+1)} \right\}^{\frac{n}{\lambda+1}}
\]

Since we want to get an upper bound on the probability, we can ignore the factor of \(\frac{\lambda}{\lambda + 1} \) so we get:

\[
(114) \quad \left(\frac{n}{n+1} \right)^{2\lambda n^2} \geq n \left\{ \frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right\}^{\frac{n}{\lambda+1}}
\]
Our estimate for the probability that any set of size \(n/(\lambda + 1) \) has a neighbor-set of size \(n\lambda/(\lambda + 1) \) is the product of this with equation (113):

\[
\frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1}(\lambda + 1)^{\lambda+1}} \mu^{\frac{n}{\lambda + 1}} \left\{ \frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right\}^{\frac{n}{\lambda + 1}}
\]

If we combine terms with exponent \(n/(\lambda + 1) \), we get

\[
n \left\{ \frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1}(\lambda + 1)^{\lambda+1}} \right\}^{\mu} \left(\frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right)^{\frac{n}{\lambda + 1}}
\]

Now the quantity raised to the power of \(n/(\lambda + 1) \) effectively overwhelms all of the other terms, so we can restrict our attention to:

\[
\left\{ \frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1}(\lambda + 1)^{\lambda+1}} \right\}^{\mu} \left(\frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right)^{\frac{n}{\lambda + 1}}
\]

and this approaches 0 as \(n \to \infty \) if and only if

\[
\left(\frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1}(\lambda + 1)^{\lambda+1}} \right)^{\mu} \left(\frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right) < 1
\]

Our conclusion is:

Proposition 3.38. Let \(\lambda, n, \mu \) be integers > 1. If \(G(V_1, V_2) \) is a bipartite graph composed of \(\mu \) random 1-factors. The probability that there exists a set \(S \subset V_1 \) of size \(n/(\lambda + 1) \) such that \(|\Gamma(S)| \leq \lambda|S| \), approaches 0 as \(n \to \infty \) if and only if

\[
\left(\frac{\lambda^{2\lambda}}{(\lambda - 1)^{\lambda-1}(\lambda + 1)^{\lambda+1}} \right)^{\mu} \left(\frac{(\lambda + 1)^{2(\lambda+1)}}{\lambda^{2\lambda}} \right) < 1
\]

or

\[
\mu > \frac{2\ln(\lambda + 1)(\lambda + 1) - 2\lambda \ln(\lambda)}{\ln(\lambda - 1)(\lambda - 1) + \ln(\lambda + 1)(\lambda + 1) - 2\lambda \ln(\lambda)}
\]

\[
= 2\lambda(\ln(\lambda) + 1) + 1 - \frac{2 + \ln(\lambda)}{3\lambda} + O(\lambda^{-3})
\]

Proof. We simply took the logarithm of equation (113) and solved for \(\mu \). After that, we obtained an asymptotic expansion of the value of \(\mu \).

Computer Algebra

3.10. Introduction. In this section we will discuss applications of parallel processing to symbolic computation, or computer algebra. We will basically give efficient parallel algorithms for performing operations on polynomials on a SIMD-parallel computer.

At first glance, it might seem that the SIMD model of computation wouldn’t lend itself to symbolic computation. It turns out that performing many algebraic operations with polynomials can be easily accomplished by using the Fourier Transform. See § 2.2 in chapter 5, particularly the discussion on page 183.
Suppose we are given two polynomials:

\[p(x) = \sum_{i=1}^{n} a_i x^i \quad (117) \]

\[q(x) = \sum_{j=1}^{m} b_j x^j \quad (118) \]

It is not difficult to write down a formula for the coefficients of the product of these polynomials:

\[(p \cdot q)(x) = \sum_{k=1}^{n+m} c_k x^k \quad (119) \]

where

\[c_k = \sum_{i+j=k} a_i \cdot b_j \quad (120) \]

The discussion in that section show that we can get the following algorithm for computing the \(\{c_k\} \):

Algorithm 3.39. We can compute the coefficients, \(\{c_k\} \), of the product of two polynomials by performing the following sequence of operations:

1. Form the Fourier Transforms of the sequences \(A = \{a_i\} \) and \(B = \{b_j\} \), giving sequences \(\{\mathcal{F}_\omega(A)\} \) and \(\{\mathcal{F}_\omega(B)\} \);
2. Form the *element-wise* product of these (Fourier transformed) sequences — this is clearly very easy to do in parallel;
3. Form the inverse Fourier transform of the product-sequence \(\{\mathcal{F}_\omega(A) \cdot \mathcal{F}_\omega(B)\} \). The result is the sequence \(\{c_k\} \).

The procedure described above turns out to be asymptotically optimal, **even in the sequential case** — in this case it leads to an \(O(n \log n) \)-time algorithm for computing the \(\{c_k\} \), rather than the execution-time of \(O(n^2) \). In the parallel case, the advantages of this algorithm become even greater. Step 2 is easily suited to implementation on a SIMD machine. In effect, the procedure of taking the Fourier Transform has converted multiplication of polynomials into ordinary numerical multiplication. The same is true for addition and subtraction.

Division presents additional complexities: even when it is possible to form the termwise quotient of two Fourier Transforms, the result may not be meaningful. It will only be meaningful if is somehow (magically?) known beforehand, that the denominator *exactly divides* the numerator.

Exercises.

3.5. Modify the program on page 193 to compute the product of two polynomials, by performing steps like those described in algorithm 3.39. The program

\[\text{This is what one gets by using the naive algorithm} \]
should prompt the user for coefficients of the two polynomials and print out the coefficients of the product.

3.11. Number-Theoretic Considerations

When one does the exercise 3.10, one often gets results that are somewhat mysterious. In many cases it is possible to plug polynomials into the programs that have a known product, and the values the program prints out don’t resemble this known answer. This is a case of a very common phenomena in numerical analysis known as *round-off error*. It is a strong possibility whenever many cascaded floating-point calculations are done. There are many techniques \(^\text{21}\) for minimizing such errors, and one technique for totally eliminating it: perform only fixed-point calculations.

The reader will probably think that this suggestion is not particularly relevant:

- Our calculations with Fourier Transforms involve irrational, and even complex numbers. How could they possibly be rephrased in terms of the integers?
- The polynomials that are input to the algorithm might have rational numbers as coefficients.
- When we use integers (assuming the the two problems above can be solved) we run into the problem of fixed point overflow.

The second objection is not too serious — we can just clear out the denominator of all of the rational number that occur in expressing a polynomial (in fact we could use a data-structure for storing the polynomials that has them in this form).

It turns out that there are several solutions to these problems. The important point is that Fourier Transforms (and their inverses) really only depend upon the existence of a “quantity” \(s \) that has the following two *structural properties*

1. \(s^n = 1; \) (in some suitable sense).
2. \[
\sum_{i=0}^{n-1} s^i = 0 \quad \text{for all } 0 < k < n - 1
\]

3. the number \(n \) has a multiplicative inverse.

The structural conditions can be fulfilled in the integers if we work with numbers *modulo* a prime number.\(^\text{22}\) In greater generality, we could work modulo any positive integer that had suitable properties. In order to explore these issues we need a few basic results in number theory:

Proposition 3.40. Suppose \(n \) and \(m \) are two integers that are relatively prime. Then there exist integers \(P \) and \(Q \) such that

\[
Pn + Qm = 1
\]

\(^{21}\)In fact an entire theory

\(^{22}\)Recall that a prime number is not divisible by any other number except 1. Examples: 2, 3, 5, 7…
Recall that the term “relatively prime” just means that the only number that exactly divides both \(n \) and \(m \) is 1. For instance, 20 and 99 are relatively prime. Numbers are relatively prime if and only if their greatest common divisor is 1.

Proof. Consider all of the values taken on by the linear combinations \(Pn + Qm \) as \(P \) and \(Q \) run over all of the integers, and let \(Z \) be the smallest positive value that occurs in this way.

Claim 1: \(Z < n, m \). If not, we could subtract a copy of \(n \) or \(m \) from \(Z \) (by altering \(P \) or \(Q \)) and make it smaller. This would contradict the fact that \(Z \) is the smallest positive value \(Pn + Qm \) takes on.

Claim: \(n \) and \(m \) are both divisible by \(Z \). This is a little like the last claim. Suppose \(n \) is not divisible by \(Z \). Then we can write \(n = tZ + r \), where \(t \) is some integer and \(r \) is the remainder that results from dividing \(n \) by \(Z - r < Z \). We plug \(Z = Pn + Qm \) into this equation to get

\[
 n = t(Pn + Qm) + r
\]
or

\[
 (1 - tP)n - Qm = r
\]

where \(r < Z \). The existence of this value of \(r \) contradicts the assumption that \(Z \) was the smallest positive value taken on by \(Pn + Qm \).

Consequently, \(Z \) divides \(n \) and \(m \). But the only positive integer that divides both of these numbers is 1, since they are relatively prime. \(\Box \)

This implies:

Corollary 3.41. Let \(m \) be a number \(> 1 \) and let \(a \) be a number such that \(a \) is relatively prime to \(m \). Then there exists a number \(b \) such that

\[
 ab \equiv 1 \pmod{m}
\]

Proof. Proposition 3.40 implies that we can find integers \(x \) and \(y \) such that \(ax + my = 1 \). When we reduce this modulo \(m \) we get the conclusion. \(\Box \)

Corollary 3.42. Let \(p \) be a prime number and let \(a \) and \(b \) be two integers such that \(0 \leq a, b < p \). Then \(ab \equiv 0 \pmod{p} \) implies that either \(a \equiv 0 \pmod{p} \) or \(b \equiv 0 \pmod{p} \)

We will also need to define:

Definition 3.43. The Euler \(\phi \)-function.

1. If \(n \) and \(m \) are integers, the notation \(n \mid m \) — stated as “\(n \) divides \(m \)”— means that \(m \) is exactly divisible by \(n \).
2. Let \(m \) be a positive integer. Then the Euler \(\phi \)-function, \(\phi(m) \) is defined to be equal to the number of integers \(k \) such that:
 a. \(0 < k < m \);
 b. \(k \) is relatively prime to \(m \). This means that the only integer \(t \) such that \(t\mid m \) and \(t\mid k \), is \(t = 1 \).

The Euler \(\phi \) function has many applications in number theory. There is a simple formula (due to Euler) for calculating it:

\[
 \phi(m) = m \prod_{p\mid m} \left(1 - \frac{1}{p}\right)
\]
where $\prod_{p|m}$ means “form the product with p running over all primes such that m is divisible by p”. It is not hard to calculate: $\phi(36) = 12$ and $\phi(1000) = 400$. It is also clear that, if p is a prime number, then $\phi(p) = p - 1$.

Many computer-algebra systems perform symbolic computations by considering numbers modulo a prime number. See [78] and [79] for more information on this approach. The following theorem (known as Euler’s Theorem) gives one important property of the Euler ϕ-function:

Theorem 3.44. Let m be any positive integer and let a be any nonzero integer that is relatively prime to m. Then

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Proof.

Claim 3.45. There exists some number k such that $a^k \mod m = 1$.

First, consider the result of forming higher and higher powers of the number a, and reducing the results $\mod m$. Since there are only a finite number of possibilities, we have to get $a^u \mod m = a^v \mod m$, for some u and v, with $u \neq v$. Suppose $u < v$. Corollary 3.41 implies that we can find a value b such that $ab \mod m = 1$, and we can use this cancel out a^u:

$$a^ub^u \mod m = a^vb^u \mod m = 1 = a^{v-u} \mod m$$

so $k = v - u$. Now consider the set, S, of all numbers i such that $1 < i < m$ and i is relatively prime to m. There are $\phi(m)$ such numbers, by definition of the Euler ϕ-function. If $i \in S$, define Z_i to be the set of numbers $\{i, ia, ia^2, \ldots, ia^{k-1}\}$, all reduced $\mod m$. For instance Z_a is $\{a, a^2, a^3, a^4, a^5\} = \{a, a^2, a^3, a^4, 1\} = Z_1$.

Claim 3.46. If $i, j \in S$, and there exists any number t such that $t \in Z_i \cap Z_j$, then $Z_i = Z_j$.

This means that the sets Z_i are either equal, or entirely disjoint. If $t \in Z_i$, then $t \mod m = ia^u \mod m$, for some integer u. Similarly, $t \in Z_j$ implies that $t \mod m = ja^v \mod m$, for some integer v. If we multiply the first equation by $b^u \mod m$ (where $ab \mod m = 1$, we get $i = tb^u \mod m$ and this implies that $i = ja^vb^u \mod m$, so $i \in Z_j$. Since all multiples of i by powers of a are also in Z_j, it follows that $Z_i \subseteq Z_j$. Since these sets are of the same size, they must be equal.

All of this implies that the set S is the union of a number of disjoint sets Z_i, each of which has the same size. This implies that the size of S (i.e., $\phi(m)$) is divisible by the size of each of the sets Z_i. These sets each have k elements, where k is the smallest integer > 1 such that $a^k \mod m = 1$. Since $\phi(m)$ is divisible by k it follows that $a^{\phi(m)} \mod m = 1$. \(\square\)

This leads to the corollary, known as Fermat’s Little Theorem:

Theorem 3.47. Let p be a prime number and let a be any nonzero integer. Then

$$a^{p-1} \equiv 1 \pmod{p}$$
Some of these numbers a have the property that they are principal $p - 1$th roots of 1 modulo p i.e., $a^i \not\equiv 1 \pmod p$ for $0 < i < p - 1$. In this case it turns out that the property expressed by equation (121) is also true for such numbers. For instance, suppose $p = 5$ and $n = 2$. Then 2 is a principal 4th root of 1 modulo 5, since $2^2 \equiv 4 \pmod 5$, $2^3 \equiv 3 \pmod 5$, and $2^4 \equiv 1 \pmod 5$.

Proposition 3.48. Let p be a prime number, and let a be a principal $p - 1$th root of 1 modulo p. Then

$$\sum_{i=0}^{n-1} a^i = 0$$

for all $0 < k < p$.

The proof is essentially the same as that of equation 25. We have to show that $(a - 1) \sum_{i=0}^{n-1} a^i = 0$ implies that $\sum_{i=0}^{n-1} a^i = 0$.

Since principal roots modulo a prime have the two required structural properties, we can use them to compute Fourier Transforms.

The advantages to this will be:

- there is be no round-off error in the computations because we are working over the integers, and
- there is be no problem of integer overflow, because all numbers will bounded by p

We also encounter the “catch” of using these number-theoretic techniques:

The results of using mod-p Fourier Transforms to do Computer Algebra will only be correct mod p.

In many cases this is good enough. For instance:

Proposition 3.49. If we know a number n satisfies the condition $-N/2 < n < N/2$, where N is some big number, then n is uniquely determined by its mod N reduction. If we pick a very big value for p, we may be able to use the mod p reductions of the coefficients of the result of our calculations to compute the results themselves.

Suppose z is the reduction of n modulo N. If $z > N/2$, then n must be equal to $-(N - z)$.

We need one more condition to be satisfied in order to use the Fast Fourier Transform algorithm, described in § 2.2 of chapter 5:

The number of elements in the sequence to be transformed must be an exact power of 2.

This imposes a very significant restriction on how we can implement the Fast Fourier Transform since Fermat’s Theorem (3.47) implies that the principal roots of 1 are the $p - 1$th-ones. In general, the main constraint in this problem is the size of $n = 2^k$. This must be a number $> \text{the maximum exponent that will occur in the computations, and it determines the number of processors that will be used.}$

Claim: Suppose p is a prime with the property that $p = tn + 1$, for some value of t, and suppose ℓ is a principal $p - 1$th root of 1 modulo p. Then ℓ^t will be a principal nth root of 1.

We must, consequently, begin with $n = 2^k$ and find a multiple tn of n with the property that $tn + 1$ is a prime number.
This turns out to be fairly easy to do. In order to see why, we must refer to two famous theorems of number theory: the Prime Number Theorem and the Dirichlet Density theorem:

Theorem 3.50. Let the function \(\pi(x) \) be defined to be equal to the number of primes \(\leq x \). Then \(\pi(x) \sim x / \log(x) \) as \(x \to \infty \).

The statement that \(\pi(x) \sim x / \log(x) \) as \(x \to \infty \) means that
\[
\lim_{x \to \infty} \frac{\pi(x)}{x / \log(x)} = 1.
\]
This was conjectured by Gauss and was proved almost simultaneously by Hadamard and C. J. de La Vallée Poussin in 1896. See [145] and [146].

Theorem 3.51. Let \(m \) be a number \(\geq 2 \) and let \(M > m \) be an integer. For all \(0 < k < m \) that are relatively prime to \(m \), define \(z(k, M) \) to be the proportion of primes \(< M \) and \(\equiv k \pmod{m} \). Then \(\lim z(k, M) = 1 / \phi(m) \) as \(M \to \infty \).

Note that \(\lim_{M \to \infty} z(k, M) = 0 \), if \(k \) is not relatively prime to \(m \), since all sufficiently large primes are relatively prime to \(m \). The number of numbers \(< m \) and relatively prime to \(m \) is equal to \(\phi(m) \), so that the Dirichlet Density Theorem says that the primes tend to be evenly distributed among the numbers \(\pmod{m} \) that can possibly be \(\equiv 1 \pmod{m} \). In a manner of speaking this theorem basically says that primes behave like random numbers\(^{23}\) when we consider their reductions modulo a fixed number \(m \).

This implies that on the average the smallest value of \(t \) with the property that \(tn + 1 \) is a prime is \(\leq \log(n) \). This is because the Prime number Theorem (3.50) implies that there are approximately \(n \) primes \(< \log(n)n + 1 \), and the Dirichlet Density theorem (3.51) implies that on the average one of these primes will be \(\equiv 1 \pmod{n} \). Table 6.1 lists primes and primitive roots of 1.

We can now carry out the Fast Fourier Transform Algorithm 2.7 on page 192 using this table:

\(^{23}\) Truly random numbers, of course, would also be \(\equiv (\pmod{m}) \) to numbers that are not relatively prime to \(m \)
1. We start with a value of k such that we have $n = 2^k$ processors available for computations.

2. We perform all computations modulo the prime p that appears in the same row of the table.

3. We use the corresponding principal n^{th} root of 1 in order to perform the Fourier Transform.

Example 3.52. Suppose we are performing the computations on a Connection Machine, and we have $2^{13} = 8192$ processors available. When we execute the Fast Fourier Transform algorithm, it is advantageous to have one processor per data element. We perform the calculations modulo the prime 40961 and set $\omega = 243$ and $\omega^{-1} = 15845$. We will also use $40956 \equiv 8192^{-1} \pmod{40961}$.

Here is a program that implements this version of the Fast Fourier Transform:

```c
#include <stdio.h>
#include <math.h>

shape [8192] linear;
unsigned int MODULUS;

unsigned int n; /* Number of data points. */
int k; /* log of number of
* data-points. */
unsigned int inv_n;

unsigned int linear temp;
int j;

void fft_comp(unsigned int, unsigned int: current, unsigned int: current *);

int clean_val(unsigned int, unsigned int);

void fft_comp(unsigned int omega, unsigned int: current in_seq,
              unsigned int: current * out_seq)
{
    /* Basic structure to hold the data-items. */
    int: linear e_vals; /* Parallel array to hold
    * the values of the e(r,j) */
    unsigned int: linear omega_powers[13]; /* Parallel array to
    * hold the values of
    * omega^e(r,j). */
    unsigned int: linear work_seq; /* Temporary variables,
    * and */
    unsigned int: linear upper, lower;

    /*
    * This block of code sets up the e_vals and the
    * omega_powers arrays.
    */
```
with (linear)
where (pcoord(0) >= n)
{
 in_seq = 0;
 out_seq = 0;
}
with (linear)
{
 int i;
 int:linear pr_number = pcoord(0);
 int:linear sp;
 e_vals = 0;
 for (i = 0; i < k; i++)
 {
 e_vals <<= 1;
 e_vals += pr_number % 2;
 pr_number >>= 1;
 }
 temp = omega;

 omega_powers[k - 1] = 1;
 sp = e_vals;
 for (i = 0; i < 31; i++)
 {
 where (sp % 2 == 1)
 omega_powers[k - 1] = (omega_powers[k - 1]* temp) % MODULUS;
 sp = sp >> 1;
 temp = (temp * temp) % MODULUS;
 }
 for (i = 1; i < k; i++)
 {
 omega_powers[k - 1 - i] = (omega_powers[k - i]*
 omega_powers[k - i]) % MODULUS;
 }
 work_seq = in_seq;
 pr_number = pcoord(0);
 for (i = 0; i < k; i++)
3. PARSING AND THE EVALUATION OF ARITHMETIC EXPRESSIONS

```c
{  
  int linear save;

  save = work_seq;
  lower = pr_number & ((1 << (k - i - 1)));  
  upper = lower | (1 << (k - i - 1));
  where (pr_number == lower)
  {  
    [lower]work_seq = ([lower]save
    +[lower]omega_powers[i]*[upper]save
    + MODULUS) % MODULUS;
    [upper]work_seq = ([lower]save +
    [upper]omega_powers[i]*[upper]save
    + MODULUS) % MODULUS;
  }
}
}

with (linear)
where (pcoord(0) < n)
[e_vals]* out_seq = work_seq;

/*
* This routine just maps large values to negative numbers.
* We are implicitly assuming that the numbers that
* actually occur in the course of the computations will
* never exceed MODULUS/2.
*/
int clean_val(unsigned int val, unsigned int modulus)
{
  if (val < modulus / 2)
    return val;
  else
    return val - modulus;
}

void main()
{
  unsigned int linear in_seq;
  unsigned int linear out_seq;
  int i, j;
  unsigned int primroot = 243;
  unsigned int invprimroot = 15845;
  MODULUS = 40961;
  k = 13;
  n = 8912; /* Number of data—points. */
  inv_n = 40956;
```
with (linear) in_seq = 0;

[0]in_seq = (MODULUS − 1);
[1]in_seq = 1;
[2]in_seq = 1;
[3]in_seq = 2;
fft_comp(primroot, in_seq, &out_seq);
/*
* Now we cube the elements of the Fourier
* Transform of the coefficients of the polynomial.
* After taking the inverse Fourier Transform of
* the result, we will get the coefficients of the
* cube of the original polynomial.
*/
with (linear)
{
 in_seq = out_seq * out_seq % MODULUS;
 in_seq = in_seq * out_seq % MODULUS;
}
fft_comp(invprimroot, in_seq, &out_seq);
with (linear)
where (pcoord(0) < n)
out_seq = (inv_n * out_seq) % MODULUS;

for (i = 0; i < 20; i++)
 printf("i=%d, coefficient is %d
", i,
clean_val(i)out_seq, MODULUS));
}

Here we have written a subroutine to compute the Fourier Transform with respect to a given root of unity. Using theorem 2.2 in §2.2 of chapter 5, we compute the inverse Fourier transform of the result by:

- taking the Fourier Transform with respect to a root of unity that is a multiplicative inverse of the original root of unity.
- multiplying by the multiplicative inverse of the number of data-points — this is 40956, in the present case

In the program above, the original input was a sequence \{-1,1,1,2,\ldots,0\}. result of taking the Fourier Transform and the inverse is the sequence \{40960,1,1,2,\ldots,0\}, so that the −1 in the original sequence has been turned into 256. Since we know that the original input data was inside the range −40961/2, +40961/2, we subtract 40961 from any term > 40961/2 to get the correct result.

This program illustrates the applicability of Fast Fourier Transforms to symbolic computation. In this case, we compute the Fourier Transform and cube the resulting values of the Fourier Transform. When we take the Inverse Transform, we will get the result of forming a convolution of the original sequence with itself 3 times. If the original sequence represented the polynomial \(1 + x + x^2 + 2x^3\), the
final result of this whole procedure will be the coefficients of \((1 + x + x^2 + 2x^3)^3\).
We will have used 8192 processors to compute the cube of a cubic polynomial!
Although this sounds more than a little ridiculous, the simple fact is that the step in which the cubing was carried out is \textit{entirely} parallel, and we might have carried out much more complex operations than cubing.

Suppose the coefficients of the problem that we want to study are \textit{too large} — i.e., they exceed \(p/2\) in absolute value. In this case we can perform the calculations with \textit{several} different primes and use the Chinese Remainder Theorem. First, recall that two integers \(n\) and \(m\) are called \textit{relatively prime} if the only number that exactly divides both of them is 1. For instance 7 and 9 are relatively prime, but 6 and 9 aren’t (since they are both divisible by 3).

Theorem 3.53. Suppose \(n_1, \ldots, n_k\) are a sequence of numbers that are pairwise relatively prime (i.e. they could be distinct primes), and suppose we have congruences:

\[
M \equiv z_1 \pmod{n_1} \\
\cdots \\
M \equiv z_k \pmod{n_k}
\]

Then the value of \(M\) is uniquely determined modulo \(\prod_{i=1}^{k} n_i\).

The term “pairwise relatively prime” means that every \textit{pair} of numbers \(n_i\) and \(n_j\) are relatively prime. If a given prime is too small for the calculations modulo that prime to determine the answer, we can perform the calculations modulo many different primes and use the Chinese Remainder Theorem. Table 6.2 lists several primes that could be used for the problem under considerations.

We will now prove the Chinese Remainder theorem, and in the process, give an algorithm for computing the value \(M\) modulo the product of the primes. We need the following basic result from Number Theory:

Algorithm 3.54. Given relatively prime integers \(m\) and \(n\) such that \(0 < m < n\), we can compute a number \(z\) such that \(zm \equiv 1 \pmod{n}\) by computing \(m^{\phi(n)-1} \pmod{n}\).

This follows immediately from Euler’s theorem, 3.44, on page 386. The running time of this algorithm is clearly \(O(\lg n)\) because \(\phi(n) < n\) (which follows from formula (122) on page 385), and we can compute \(m^{\phi(n)-1} \pmod{n}\) by \textit{repeated squaring}.

Now we are in a position to prove the Chinese Remainder theorem. Suppose we have congruences:

\[
M \equiv z_1 \pmod{n_1} \\
\cdots \\
M \equiv z_k \pmod{n_k}
\]

Now set \(P = \prod_{i=1}^{k} n_i\) and multiply the \(i\)th equation by \(P/n_i = \prod_{j \neq i} n_j\). We get:

\[
M \left(\frac{P}{n_1} + \cdots + \frac{P}{n_k} \right) = z_1 \frac{P}{n_1} + \cdots + z_k \frac{P}{n_k} \pmod{P}
\]

The fact that the \(\{n_i\}\) are relatively prime implies that \(\left(\frac{P}{n_1} + \cdots + \frac{P}{n_k} \right)\) and \(P\) are relatively prime. We can use 3.54 to compute a multiplicative inverse \(J\) to
Table 6.2. Distinct primes for the FFT with 8912 processors

<table>
<thead>
<tr>
<th>p</th>
<th>$8192^{-1} \pmod{p}$</th>
<th>$\omega = \text{Principal } n^{\text{th}} \text{ root of 1}$</th>
<th>ω^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>40961</td>
<td>40956</td>
<td>243</td>
<td>15845</td>
</tr>
<tr>
<td>65537</td>
<td>65529</td>
<td>6561</td>
<td>58355</td>
</tr>
<tr>
<td>114689</td>
<td>114675</td>
<td>80720</td>
<td>7887</td>
</tr>
<tr>
<td>147457</td>
<td>147439</td>
<td>62093</td>
<td>26569</td>
</tr>
<tr>
<td>163841</td>
<td>163821</td>
<td>84080</td>
<td>15743</td>
</tr>
<tr>
<td>188417</td>
<td>188394</td>
<td>59526</td>
<td>383</td>
</tr>
</tbody>
</table>

We will conclude this section with an example. We will do some algebraic calculations over two different primes, $p_1 = 40961$ and $p_2 = 65537$, and use the Chinese Remainder Theorem to patch the results together. The final results will be correct modulo $2^{31} < p_1 p_2 = 268461057 < 2^{32}$. Since we will be using a machine with a word-size of 32 bits, we will have to use unsigned integers for all calculations. In addition, we will need special routines for addition and multiplication, so that the calculations don’t produce an overflow-condition. Since the primes p_1 and p_2 are both $< \sqrt{2^{32}}$, we will only need these special routines in the step that uses the Chinese Remainder Theorem. We will also need:

- $a_1 = p_2 / (p_1 + p_2) \equiv 894711124 \pmod{p_1 p_2}$
- $a_2 = p_1 / (p_1 + p_2) \equiv 1789749934 \pmod{p_1 p_2}$

```c
#include <stdio.h>
#include <math.h>
shape [8192]linear;
unsigned int p1=40961;
unsigned int p2=65537;
unsigned int MODULUS=40961*65537;
/* (40961+65537)&*(-1) mod 40961*65537 */
unsigned int invpsum=597020227;

unsigned int n; /* Number of data points. */
int k; /* log of number of */
/* data-points. */
unsigned int inv_n;

unsigned int:linear temp;
int j;
```

We won’t use any of the unique features of the CM-2, such as the availability of large (or variable) words.
void fft_comp(unsigned int, unsigned int:current, unsigned int:current *);

int clean_val(unsigned int, unsigned int);

void fft_comp(unsigned int omega, unsigned int:current in_seq, unsigned int:current * out_seq)
{
 /* Basic structure to hold the data—items. */
 int:linear e_vals; /* Parallel array to hold
 * the values of the e(r,j) */
 unsigned int:linear omega_powers[13]; /* Parallel array to
 * hold the values of
 * omega^e(r,j), */
 unsigned int:linear work_seq; /* Temporary variables,
 * and */
 unsigned int:linear upper, lower;

 /*
 * This block of code sets up the e_vals and the
 * omega_powers arrays.
 */
 with (linear)
 where (pcoord(0) >= n)
 {
 in_seq = 0;
 *out_seq = 0;
 }
 with (linear)
 {
 int i;
 int:linear pr_number = pcoord(0);
 int:linear sp;
 e_vals = 0;
 for (i = 0; i < k; i++)
 {
 e_vals <<= 1;
 e_vals += pr_number % 2;
 pr_number >>= 1;
 }
 /* * Raise omega to a power given by
 * e_vals[k−1]. We do this be repeated
 * squaring, and multiplying omega^(2^n),
 * for i corresponding to a 1−bit in the
 * binary representation of e_vals[k−1].
 */
temp = omega;

omega_powers[k - 1] = 1;
sp = e_vals;
for (i = 0; i < 31; i++)
{
 where (sp % 2 == 1)
 omega_powers[k - 1] = (omega_powers[k - 1] * temp) % MODULUS;
}
sp = sp >> 1;
temp = (temp * temp) % MODULUS;
}
for (i = 1; i < k; i++)
{
 omega_powers[k - 1 - i] = (omega_powers[k - i] *
 omega_powers[k - i]) % MODULUS;
}
work_seq = in_seq;
pr_number = pcoord(0);
for (i = 0; i < k; i++)
{
 int: linear save;
 save = work_seq;
 lower = pr_number & ('1 << (k - i - 1));
 upper = lower | ('1 << (k - i - 1));
 where (pr_number == lower)
 {
 [lower]work_seq = ([lower]save +
 [lower]omega_powers[i] *[upper]save +
 MODULUS) % MODULUS;
 [upper]work_seq = ([lower]save +
 [upper]omega_powers[i] *[upper]save +
 MODULUS) % MODULUS;
 }
}
}
with (linear)
where (pcoord(0) < n)
[e_vals]* out_seq = work_seq;

/*
 * This routine just maps large values to negative numbers.
 * We are implicitly assuming that the numbers that
 * actually occur in the course of the computations will
* never exceed MODULUS/2. */

```c
int clean_val(unsigned int val, unsigned int modulus)
{
    if (val < modulus / 2)
        return val;
    else
        return val - modulus;
}
```

```c
void main()
{
    unsigned int:linear in_seq;
    unsigned int:linear out_seq;
    int i, j;
    unsigned int primroot = 243;
    unsigned int invprimroot = 15845;

    MODULUS = 40961;
    k = 13;
    n = 8912; /* Number of data—points. */
    inv_n = 40956;
    with (linear) in_seq = 0;

    [0]in_seq = (MODULUS - 1);
    [1]in_seq = 1;
    [2]in_seq = 1;
    [3]in_seq = 2;
    fft_comp(primroot, in_seq, &out_seq);

    /*
     * Now we cube the elements of the Fourier
     * Transform of the coefficients of the polynomial.
     * After taking the inverse Fourier Transform of
     * the result, we will get the coefficients of the
     * cube of the original polynomial.
     */
    with (linear)
    {
        in_seq = out_seq * out_seq % MODULUS;
        in_seq = in_seq * out_seq % MODULUS;
    }
    fft_comp(invprimroot, in_seq, &out_seq);
    with (linear)
    where (pcoord(0) < n)
    out_seq = (inv_n * out_seq) % MODULUS;

    for (i = 0; i < 20; i++)
```
printf("i=%d, coefficient is %d\n", i,
clean_val([i]out_seq, MODULUS));
}

The procedure in this program only works when the coefficients of the result lie in the range \(-2684461057/2, +2684461057/2\). If the coefficients of the result do not meet this requirement, we must perform the calculations over several different primes (like the ones in table 6.2 on page 394) and use the Chinese Remainder Theorem on page 393 to patch up the results.

3.12. Discussion and further reading. D. Weeks has developed fast parallel algorithms for performing computations in algebraic number fields. See [170] for details. Algebraic number fields are extensions of the rational numbers that contain roots of polynomials.

EXERCISES.

3.6. Given a prime \(p\) and a positive number \(n\), give an algorithm for computing the inverse of \(n\) modulo \(p\). (Hint: use Fermat’s theorem — 3.47.

3.7. Can the interpolation algorithm in § 1.4 (page 278) be used to do symbolic computations?

3.8. Suppose \(m\) is a large number\(^{25}\). Give algorithms for performing computations modulo \(m\). Note:

1. A number modulo \(m\) can be represented as a linked list of words, or an array.
2. Multiplication can be carried out using an algorithm involving a Fast Fourier Transform\(^{26}\). The hard part is reducing a number \(> m\) that represented as an array or linked list of words, modulo \(m\).

3.9. Most computer-algebra systems (i.e., Maple, Reduce, Macsyma, etc.) have some number-theoretic capabilities and have an associated programming language. If you have access to such a system, write a program in the associated programming language to:

1. Write a function that takes an exponent \(k\) as its input and:
 a. Finds the smallest prime \(p\) of the form \(t2^k + 1\);
 b. Finds a principal \(p - 1^{th}\) root of 1 modulo \(p\)
 c. Raises that principal root of 1 to the \(t^{th}\) power modulo \(p\) in order to get a principal \(n^{th}\) root of 1 modulo \(p\), where \(n = 2^k\).

For instance, the author wrote such a function in the programming language bundles with Maple on a Macintosh Plus computer to compute table 6.1 (in about 20 minutes).

\(^{25}\)In other words, it is large enough that it is impossible to represent this number in a word on the computer system to be used for the computations
\(^{26}\)Where have we heard of that before! See the discussion on using Fourier Transforms to perform multiplication of binary numbers on page 184.
2. Write a function to take two exponents k and k' as parameters and find the largest prime $p < 2^k$ such that p is of the form $t2^{k'} + 1$.
CHAPTER 7

Probabilistic Algorithms

1. Introduction and basic definitions

In this chapter we will discuss a topic whose importance has grown considerably in recent years. Several breakthroughs in sequential algorithms have been made, in such diverse areas as computational number theory (with applications to factoring large numbers and breaking Public-Key Encryption schemes, etc.), and artificial intelligence (with the development of Simulated Annealing techniques). A complete treatment of this field is beyond the scope of the present text. Nevertheless, there are a number of simple areas that we can touch upon.

Perhaps the first probabilistic algorithm ever developed predated the first computers by 200 years. In 1733 Buffon published a description of the so-called Buffon Needle Algorithm for computing π — see [23]. Although it is of little practical value, many modern techniques of numerical integration can be regarded as direct descendants of it. This algorithm requires a needle of a precisely-known length and a floor marked with parallel lines with the property that the distance between every pair of neighboring lines is exactly double the length of the needle. It turns out that if the needle is dropped on this floor, the probability that it will touch one of the lines is equal to $1/\pi$. It follows that if a person randomly drops this needle onto the floor and keeps a record of the number of times it hits one of the lines, he or she can calculate an approximation of π by dividing the number of times the needle hits a line of the floor into the total number of trials. This "algorithm" is not practical because it converges fairly slowly, and because there are much better ways to compute π.

There are several varieties of probabilistic algorithms:

1.1. Numerical algorithms. The Buffon Needle algorithm falls into this category. These algorithms involve performing a large number of independent trials and produce an answer that converges to the correct answer as the number of trials increase. They are ideally suited to parallelization, since the trials are completely independent — no communication between processors is required (or even wanted). In fact the distinction between SIMD and MIMD algorithms essentially disappears when one considers these algorithms.

1.1.1. Monte Carlo Integration. This is a very unfortunate name since Monte Carlo Integration is not a Monte Carlo algorithm, as they are usually defined (see § 1.2, below). It is based upon the principle that is used in the rain gauge — the amount of rain hitting a given surface is proportional to the rate of rainfall and the area of the surface. We can also regard it as a direct generalization of the Buffon needle algorithm. We will begin by giving a very simple example of this type of algorithm. We want to solve the basic problem of computing a definite integral
PROBABILISTIC ALGORITHMS

402

7. PROBABILISTIC ALGORITHMS

like

\[A = \int_{a}^{b} f(x) \, dx \]

Let \(M = \max_{a \leq x \leq b} f(x) \) and \(m = \min_{a \leq x \leq b} f(x) \). Now we pick a large number of points in the rectangle \(a \leq x \leq b, m \leq y \leq M \) at random and count the number of points that lie below the curve \(y = f(x) \). If the randomly-chosen points are uniformly distributed the expected count of the points below the curve \(y = f(x) \) is proportional to the integral \(A \) — see figure 7.1.

The algorithm for computing integrals is extremely simple:

\[\text{ALGORITHM 1.1.} \]

All processors allocate two counters \(i \) and \(t \). Perform the following steps as until a desired degree of accuracy is achieved:

In parallel all processors perform the following sequence of steps:

1. Randomly generate a point \((x, y)\), of the domain of integration — this is given by \(a \leq x \leq b, m \leq y \leq M \) in the example above. Increment the \(t \) counter.
2. Determines whether its generated point lies under the curve \(y = f(x) \).
 This is just a matter of deciding whether the inequality \(y \leq f(x) \) is satisfied. It, therefore, involves a computation of \(f(x) \).
3. If the inequality above is satisfied, increment the \(i \) counter.

Form the totals of all of the \(t \), and \(i \) counters and call them \(T \), and \(R \), respectively. The estimate of the value of

\[A = \int_{a}^{b} f(x) \, dx \]

\[\frac{(M - m)(b - a)T}{R} \]

The nice features of this algorithm include:

- There is no communication whatsoever needed between processors in this algorithm. It is, consequently, ideally suited for parallelization.
- This algorithm has essentially complete utilization of the processors. In other words, the parallel version of the algorithm it almost exactly \(n \) times faster than the sequential version, where \(n \) is the number of processors involved.
Monte Carlo integration is of most interest when we want to compute a multiple integral. Deterministic algorithms using systematic methods to sample the values of the function to be integrated generally require a sample size that grows exponentially with the dimension, in order to achieve a given degree of accuracy. In Monte Carlo integration, the dimension of the problem has little effect upon the accuracy of the result. See [151] for a general survey of Monte Carlo integration.

Exercises.

1.1. Write a C* program to perform Monte Carlo Integration to evaluate the integral

\[\int_0^2 \frac{1}{\sqrt{1 + x^3 + x^7}} \, dx \]

(Use the `prand`-function to generate random numbers in parallel. It is declared as `int:current prand(void).`)

1.2. **Monte Carlo algorithms.** Some authors use this term for all probabilistic algorithms. Today the term Monte Carlo algorithms usually refers to algorithms that make random choices that cause the algorithm to either produce the correct answer, or a completely wrong answer. In this case, the wrong answers are not approximations to the correct answer. These algorithms are equipped with procedures for comparing answers — so that the probability of having a recognizably correct answer increases with the number of trials. There is always a finite probability that the answer produced by a Monte Carlo algorithm is wrong.

Definition 1.2. We distinguish certain types of Monte Carlo algorithms:

1. A Monte Carlo algorithm is called **consistent** if it never produces two distinct correct answers.
2. If the probability that a Monte Carlo algorithm returns a correct answer in one trial is \(p \), where \(p \) is a real number between 1/2 and 1, then the algorithm is called **\(p \)-correct**. The value \(p - 1/2 \) is called the **advantage** of the algorithm.
3. Suppose \(y \) is some possible result returned by a consistent Monte Carlo algorithm, \(A \). The \(A \) is called **\(y \)-biased** if there exists a subset \(X \) of the problem-instances such that:
 a. the solution returned by \(A \) is always correct whenever the instance to be solved is not in \(X \).
 b. the correct answer to all instances that belong to \(X \) is always \(y \).

We do not require the existence of a procedure for testing membership in \(X \).
We will be interested in analyzing \(y \)-biased Monte Carlo algorithms. It turns out that such algorithms occur in many interesting situations (involving parallel algorithms), and there are good criteria for the correctness of the answers that these algorithms return.

Proposition 1.3. If a \(y \)-biased Monte Carlo algorithm returns \(y \) as its answer, the answer is correct.

Proof. If a problem-instance is in \(X \), and the algorithm returns \(y \), the answer is correct. If the instance is not in \(X \) it always returns correct answers.

Proposition 1.4. Suppose \(A \) is a \(y \)-biased Monte Carlo algorithm, and we call \(A \) \(k \) times and receive the answers \(\{y_1, \ldots, y_k\} \). In addition, suppose that \(A \) is \(p \)-correct. Then:
1. If for some \(i \), \(y_i = y \), then this is the correct answer.
2. If \(y_i \neq y_j \) for some values of \(i \) and \(j \), then \(y \) is the correct answer. This is due to the fact that the algorithm is consistent. If two different answers are received, they cannot be the correct answers. Consequently, the problem-instances must have been in \(X \), in which case it is known that the correct answer is \(y \).
3. If all of the \(y_i = \bar{y} \), for all \(1 \leq i \leq k \), and \(\bar{y} \neq y \), then the probability that this is a wrong answer is \((1 - p)^k \).

As an example of a \(y \)-biased, we will examine the following simple algorithm for testing whether a polynomial is identically zero:

Proposition 1.5. Let \(p(x) \) be a polynomial, and suppose we have a “black box” that returns the value of \(p(x) \), given a value of \(x \). Our Monte Carlo algorithm plugs sets \(x \) to a random number and computes \(p(x) \) (using the “black box”). The algorithm returns \(p(x) \neq 0 \) if this result is nonzero and reports that \(p(x) = 0 \) if this computation is zero.

Clearly, this is \(y \)-biased, where \(y \) is the answer that says that \(p(x) \neq 0 \), since a polynomial, \(p(x) \), that is nonzero for any value of \(x \) cannot be identically zero.

1.3. Las Vegas algorithms.

These are algorithms that, unlike Monte Carlo algorithms, never produce incorrect answers. These algorithms make random choices that sometimes prevent them from producing an answer at all. These algorithms generally do not lend themselves to SIMD implementation. The random choices they make alter the flow of control, so they need independent processes. The main result involving these algorithms that is of interest to us is:

Proposition 1.6. If a Las Vegas algorithm has a probability of \(p \) of producing an answer, then the probability of getting an answer from it in \(n \) trials is \(1 - (1 - p)^n \).

Proof. If the probability of producing an answer in one trial is \(p \), then the probability of not producing an answer in one trial is \(1 - p \). The probability of this outcome occurring repeatedly in \(n \) trials (assuming all trials are independent) is \((1 - p)^n \). Consequently, the probability of getting a answer within \(n \) trials is \(1 - (1 - p)^n \).

If we define the **expected number of repetitions until success** as the average number of trials that are necessary until we achieve success. This is a weighted average of the number of trials, weighted by the probability that a given number of trials is necessary.
2. The class textbfRNC

These are algorithms that always work, and always produce correct answers, but the running time is indeterminate, as a result of random choices they make. In this case, the probable running time may be very fast, but the worst case running time (as a result of unlucky choices) may be bad. This type of algorithm is of particular interest in Parallel Processing. We define the class textbfRNC to denote the class of problems that can be solved by probabilistic parallel algorithms in probable time that is poly-logarithmic, using a polynomial number of processors (in the complexity-parameter — see 30).

The precise definition is

Definition 2.1. Let A be a probabilistic parallel algorithm. Then:

1. the *time-distribution* of this algorithm is a function $p(t)$ with the property that the probability of the execution-time of the algorithm being between t_0 and t_1 is

 $$\int_{t_0}^{t_1} p(t) dt$$

2. the *expected execution-time* of the algorithm is

 $$\mu_1(A) = \int_0^{\infty} tp(t) dt$$
3. A problem with complexity-parameter n is in the class \textbf{RNC} if there exists a probabilistic parallel algorithm for it that uses a number of processors that is a polynomial in n and which has expected execution-time that is $O(\lg^k n)$ for some value of k.

We will also distinguish a type of algorithm that is a Monte Carlo \textbf{RNC} algorithm. This is a Monte Carlo algorithm that executes in expected time $O(\lg^k n)$ with a polynomial number of processors. This class of such problems will be called $\textbf{m-RNC}$.

The expected execution is a weighted average of all of the possible execution-times. It is weighted by the probabilities that given execution-times actually occur. It follows that, if we run an \textbf{RNC} algorithm many times with the same input and compute the average running time, we will get something that is bounded by a power of the logarithm of the input-size.

We must distinguish the class $\textbf{m-RNC}$, because these algorithms do not necessarily produce the correct answer in expected poly-logarithmic time — they only produce an answer with some degree of confidence. We can repeat such an algorithm many times to increase this level of confidence, but the algorithm will still be in $\textbf{m-RNC}$.

Exercises.

2.1. Suppose we define a class of algorithms called $\textbf{lv-RNC}$ composed of Las Vegas algorithms whose expected execution-time is poly-logarithmic, using a polynomial number of processors. Is this a new class of algorithms?

2.1. **Work-efficient parallel prefix computation.** This section discusses a simple application of randomization in a parallel algorithm. Recall the discussion at the end of § 5.5.2 regarding the use of the Brent Scheduling Principle to perform parallel-prefix operations on n items stored in an array, using $O(n/\lg n)$ processors. The general method for accomplishing this involves a first step of precisely ranking a linked list — see Algorithm 1.8 on page 271. The problem with this algorithm is that it isn’t work-efficient — it requires $O(n)$ processors, for an execution time of $O(\lg n)$. A work-efficient algorithm would require $O(n/\lg n)$ processors. For many years there was no known deterministic algorithm for the list ranking problem. In 1984 Uzi Vishkin discovered a probabilistic algorithm for this problem in 1984 — see [168]. In 1988 Anderson and Miller developed an simplified version of this in [8]. We will discuss the simplified algorithm here.

Algorithm 2.2. Let $\{a_0, \ldots, a_{n-1}\}$ be data-structures stored in an array, that define a linked list, and let $*$ be some associative operation. Suppose that the data
of element \(a_i \) is \(d_i \). Then there exists a textbf{RNC} algorithm for computing the quantity \(d_0 \star \cdots \star d_{n-1} \). The expected execution-time is \(O(\lg n) \) using \(O(n/\lg n) \) processors (on an EREW-PRAM computer).

Although the input-data is stored in an array, this problem is not equivalent to the original problem that was considered in connection with the Brent Scheduling Principle: in the present problem the \(a_i \) are not stored in consecutive memory locations. Each of the \(a_i \) has a next-pointer that indicates the location of the next term.

We begin the algorithm by assigning \(O(\lg n) \) elements of the linked list to each processor in an arbitrary way. Note that if we could know that each processor had a range of consecutive elements assigned to it, we could easily carry out the deterministic algorithm for computing \(d_0 \star \cdots \star d_{n-1} \) — see 1.6 on page 270.

The algorithm proceeds in phases. Each phase selects certain elements of the list, deletes them, and splices the pieces of the list together. After carrying out these two steps, we recursively call the algorithm on the new (shorter) list. When we delete an entry from the linked list, we modify the following entry in such a way that the data contained in the deleted entry is not lost. In fact, if we delete the \(i^{th} \) entry of the linked list (which, incidentally, is probably not the \(i^{th} \) entry in the array used to store the data) we perform the operation

\[
d_{i+1} \leftarrow d_i \star d_{i+1}
\]

In order for this statement to make any sense, our deletions must satisfy the condition that

No two adjacent elements of the list are ever deleted in the same step.

In addition, in order to maximize parallelism and make the algorithm easier to implement, we also require that:

At most one of the elements of the linked list that are assigned to a given processor is deleted in any phase of the algorithm.

We will show that it is possible to carry out the deletions in such a way that the two conditions above are satisfied, deletions require constant parallel time, and that, on average, \(O(\lg n) \) phases of the algorithm are need to delete all of the entries of the linked list.

The deletions are selected by the following procedure:

2.3. Selection Procedure:

1. Each processor selects one of its associated list-elements still present in the linked list. We will call the list-element selected by processor \(i, e_i \).
2. Each processor “flips” a coin — i.e., generates a random variable that can equal 0 or 1 with equal probability. Call the \(i^{th} \) “coin value” \(c_i \) (1=heads).
3. If \(c_i = 1 \) and \(c_{i+1} \neq 1 \), then \(e_i \) is selected for deletion.

Note that this procedure selects elements that satisfy the two conditions listed above, and that the selection can be done in constant time. We must analyze the behavior of this algorithm. The probability that a processor will delete its chosen element in a given step is 1/4 since

1. The probability that it will get \(c_i = 1 \) is 1/2.
2. The probability that \(c_{i+1} = 0 \) is also 1/2.
This heuristic argument implies that the algorithm completes its execution in $O(\lg n)$ phases. In order to prove this rigorously, we must bound the probability that very few list-elements are eliminated in a given step. The argument above implies that, on the average, $O(n/\lg n)$ list elements are eliminated in a given step. The problem is that this average might be achieved by having a few processors eliminate all of their list-elements rapidly, and having the others hold onto theirs. The mere statement that each phase of the algorithm has the expected average behavior doesn’t prove that the expected execution time is what we want. We must also show that the worst case behavior is very unlikely.

We will concentrate upon the behavior of the list-entries selected by a single processor in multiple phases of the algorithm. In each phase, the processor has a probability of $1/4$ of deleting an element from the list. We imagine the entries selected in step 1 of the selection procedure above as corresponding to “coins” being flipped, where the probability of “heads” (i.e., the chosen element being deleted from the list) is $1/4$. In $c \lg n$ trials, the probability of $\leq \lg n$ “heads” occurring is

$$\Pr \left[\frac{H \leq \lg k}{\lg n} \right] \leq \left(\frac{c \lg n}{\lg n} \right) \left(\frac{3}{4} \right)^{c \lg n - \lg n}$$

Here, we simply compute the probability that $c \lg n - \lg n$ tails occur and we ignore all of the other factors. The factor $\left(\frac{3}{4} \right)^{c \lg n - \lg n}$ is the probability the first $c \lg n - \lg n$ trials result in tails, and the factor of $\left(\frac{c \lg n}{\lg n} \right)$ is the number of ways of distributing these results among all of the trials. We use Stirling’s formula to estimate the binomial coefficient:

$$\left(\frac{c \lg n}{\lg n} \right) \left(\frac{3}{4} \right)^{c \lg n - \lg n} = \left(\frac{c \lg n}{\lg n} \right) \left(\frac{3}{4} \right)^{(c-1) \lg n}$$

$$\leq \left(\frac{ec \lg n}{\lg n} \right)^{\lg n} \left(\frac{3}{4} \right)^{(c-1) \lg n}$$

$$= \left(ec \left(\frac{3}{4} \right)^{c-1} \right)^{\lg n}$$

$$\leq \left(\frac{1}{4} \right)^{\lg n}$$

$$= \frac{1}{n^2}$$

as long as $c \geq 20$ (this is in order to guarantee that Stirling’s formula is sufficiently accurate). This is the probability that one processor will still have list-elements left over at the end of $c \lg n$ phases of the algorithm. The probability that any of the $n/\lg n$ processors will have such list elements left over is

$$\leq \frac{n}{\lg n} \cdot \frac{1}{n^2} \leq \frac{1}{n}$$

and this shows that the expected execution-time is $O(\lg n)$.
2. THE CLASS textbfRNC 409

EXERCISES.

2.2. What is the worst-case running time of the randomized parallel prefix algorithm?

2.3. How would the algorithm have to be modified if we wanted to compute all of the values \(\{d_0, d_0 \ast d_1, \ldots, d_0 \ast \cdots \ast d_{n-1}\} \)?

2.2. The Valiant and Brebner Sorting Algorithm. This algorithm is due to Valiant and Brebner (see [164]). It was one of the first textbfRNC algorithms to be developed and illustrates some of the basic ideas involved in all textbfRNC algorithms. It is also interesting because an incomplete implementation of it is built into a physical piece of hardware — the Connection Machine. The implementation on the Connection Machine is incomplete because it doesn’t use the randomized aspects of the Valiant-Brebner algorithm. As a result this implementation occasionally suffers from the problems that randomization was intended to correct — bottlenecks in the data-flow.

Suppose we have an \(n \)-dimensional hypercube computer. Then the vertices will be denoted by \(n \)-bit binary numbers and adjacent vertices will be characterized by the fact that their binary numbers differ in at most one bit. This implies that we can route data on a hypercube by the following algorithm:

\textbf{Lemma 2.4.} Suppose we want to move data from vertex \(a_1 \ldots a_n \) to vertex \(b_1 \ldots b_n \), where these are the binary representations of the vertex numbers. This movement can be accomplished in \(2n \) steps by:

1. scanning the numbers from left to right and;
2. whenever the numbers differ (in a bit position) moving the data along the corresponding communication line.

Suppose we have a hypercube computer with information packets at each vertex. The packets look like \(<\text{data}, \text{target, vertex}>\), and we send them to their destinations in two steps as follows:

Phase 1. Generate temporary destinations for each packet and send the packets to these temporary destinations. These are \textit{random} \(n \)-bit binary numbers (each bit has a \(1/2 \) probability of being 1).

Phase 2. Send the packets from their temporary destinations to their true final destinations.

In carrying out these data movements we must:

1. use the left to right algorithm for routing data, and;
2. whenever multiple packets from phase 1 or phase 2 appear at a vertex they are queued and sequentially sent out;
3. whenever packets from both phases appear at a vertex the packets from phase 1 have priority over those from phase 2.
The idea here is that bottlenecks occur in the routing of data to its final destination because of patterns in the numbers of the destination-vertices. This problem is solved by adding the intermediate step of sending data to random destinations. These random temporary destinations act like hashing — they destroy regularity of the data so that the number of collisions of packets of data is minimized.

The main result is:

Theorem 2.5. The probability is $(0.74)^d$ that this algorithm, run on a hypercube of d dimensions, takes more than $8d$ steps to complete.

Since the number of vertices of a hypercube of dimension d is 2^d, we can regard $n = 2^d$ as the number of input data values. The expected execution-time of this algorithm is, consequently, $O(\lg n)$.

This result has been generalized to computers on many bounded-degree networks by Upfal in [161].

2.3. Maximal Matchings in Graphs. In this section we will discuss a probabilistic algorithm for performing an important graph-theoretic computation.

Definition 2.6. Let $G = (V, E)$ denote an undirected graph.

1. A maximal matching of G is a set of edges $M \subseteq E$ such that
 - For any two $e_i, e_j \in M$, e_i has no end-vertices in common with e_j. This is called the vertex disjointness property.
 - The set M is maximal with respect to this property. In other words, the graph G' spanned by $E \setminus M$ consists of isolated vertices.
2. A maximal matching, M, is perfect if all vertices of G occur in the subgraph induced by the edges in M.
3. If G is a weighted graph then a minimum weight maximal matching, $M \subseteq E$ is a maximum matching such that the total weight of the edges in M is minimal (among all possible maximum matchings).

Note that not every graph has a perfect matching — for instance the number of vertices must be even. Figure 7.2 shows a graph with a perfect matching — the edges in the matching are darker than the other edges.

\[\text{Figure 7.2. A graph with a perfect matching}\]
In the past, the term “maximal matching” has often been used to refer to a matching with the largest possible number of edges. Finding that form of maximal matching is much more difficult than finding one as we define it. There is clearly a simple greedy sequential algorithm for finding a maximum matching in our sense. The two different definitions are connected via the concept of minimum-weight maximal matching — just give every edge in the graph a weight of -1.

Sequential algorithms exist for solving the “old” form of the maximum matching problem — the book of Lovász and Plummer, [106], and the paper of Edmonds, [48] give a kind of survey of the techniques.

The parallel algorithms for solving the maximal matching problem are generally based upon the theorem of Tutte proved in 1947 — see [159]. It proved that a graph has a perfect matching if and only if a certain matrix of indeterminates, called the Tutte matrix, is non-singular (has an inverse).

A matrix is non-singular if and only if its determinant is nonzero — see the definition of a determinant in 1.8 on page 139. The first algorithm based on this result was due to Lovász in 1979 — see [104]. This algorithm determines whether the Tutte matrix is nonsingular by a Monte Carlo algorithm — namely 1.5 on page 404.

Since it can be difficult to efficiently compute the determinant of a matrix of indeterminates, the algorithm of Lovász turns the Tutte matrix into a matrix of numbers by plugging random values into all of the indeterminates. There are several efficient parallel algorithms for deciding whether a matrix of numbers is nonsingular: Lovász

1. Use Csanky’s algorithm for the determinant in § 1.5 of chapter 5. This is actually not very efficient (but it is an NC algorithm).
2. Use the results in § 1.3 of the same chapter to decide whether the matrix has an inverse. This is the preferred method.

However we decide whether the modified Tutte matrix is nonsingular, we get a probabilistic algorithm for deciding whether the original graph had a perfect matching: the random values we plugged into the indeterminates might have been a “root” of the determinant (regarded as a polynomial in the indeterminates). In other words, we might get a “No” answer to the question of whether there exists a perfect matching, even though the determinant of the original Tutte matrix is nonzero, as a polynomial (indicating that the graph does have a perfect matching). Lovász’s algorithm is, consequently, a Yes-biased Monte Carlo algorithm, and can be regarded as an m-textbfRNC algorithm.

The first m-textbfRNC algorithm for maximal matchings was discovered by Karp, Upfal and Wigderson in 1985 — see [84] and [85]. It solves all forms of the maximal matching problem — including the weighted maximal matching problems.

We will present a simpler (and ingenious) algorithm for this problem developed by Ketan Mulmuley, Umesh Vazirani and Vijay Vazirani in 1987 — see [121]. This algorithm computes a maximal matching in a very interesting way:

1. It assigns weights to the edges of a graph in a random, but controlled fashion (this will be clarified later).

2. i.e., a matching such that adding any additional edge to destroys the vertex disjointness property.

3. Which implies that it also solves the “old” form of the maximal matching problem.
2. It computes the weight of a minimum-weight maximum matching in such a way we can determine the only edges that could possibly have participated in this matching. In other words, we assign weights that are not entirely random, but with the property that numerical values of the sum of any subset of the weights uniquely determines the weights that could have participated in the summation.

2.3.1. A Partitioning Lemma. We will begin with some technical results that allow us to “randomly” assign weights that have this property.

Definition 2.7. A set system \((S, F)\) consists of a finite set \(S\) of elements \(\{x_1, \ldots, x_n\}\), and a family, \(F\), of subsets of \(S\), so \(F = \{S_1, \ldots, S_k\}\) with \(S_j \subseteq S\).

If we assign a weight \(w_i\) to each element \(x_i\) of \(S\), we define the weight \(w(S_i)\) of a set \(S_i\) by

\[
w(S_i) = \sum_{x_j \in S_i} w_j
\]

Lemma 2.8. Let \((S, F)\) be a set system whose elements are assigned integer weights chosen uniformly and independently from \([1 \ldots 2n]\). Then the probability that there exists a unique minimum-weight set in \(F\) is \(1/2\).

Proof. Pick some value of \(i\) and fix the weights of all of the elements except \(x_i\). We define the threshold for element \(x_i\) to be the number \(\alpha_i\) such that:
1. if \(w_i \leq \alpha_i\), then \(x_i\) is contained in some minimum weight subset \(S_j\), and
2. if \(w_i > \alpha_i\), then \(x_i\) is in no minimum-weight subset.

Clearly, if \(w_i < \alpha_i\), then the element \(x_i\) must be in every minimum-weight subset. Thus ambiguity about element \(x_i\) occurs if and only if \(w_i = \alpha_i\), since in this case there is some minimum-weight subset that contains \(x_i\) and another that does not. In this case, we will say that the element \(x_i\) is singular.

Now we note that the threshold \(\alpha_i\) was defined independently of the weight \(w_i\). Since \(w_i\) was selected randomly, uniformly, and independently of the other \(w_j\), we get:

Claim: The probability that \(x_i\) is singular is \(\leq \frac{1}{2n}\).

Since \(S\) contains \(n\) elements:

Claim: The probability that there exists a singular element is \(\leq n \cdot (1/2n) = 1/2\).

It follows that the probability that there is no singular element is 1/2.

Now we observe that if no element is singular, then minimum-weight sets will be unique, since, in this case, every element will either be in every minimum-weight set or in no minimum-weight set.

2.3.2. Perfect Matchings. Now we will consider the special case of perfect matchings in bipartite graphs. Recall the definition of a bipartite graph in 5.8 on page 90. This turns out to be a particularly simple case. The methods used in the general case are essentially the same but somewhat more complex.

We will assume given a bipartite graph \(G = G(V_1, V_2, E)\) with \(2n\) vertices and \(m\) edges. In addition, we will assume that \(G\) has a perfect matching. As remarked above, this is a highly nontrivial assumption. We will give an textbfRNC algorithm for finding a perfect matching.
We regard the edges in E and the set of perfect matchings in G as a set-system. We assign random integer weights to the edges of the graph, chosen uniformly and independently from the range $[1..2m]$. Lemma 2.8 on page 412 implies that the minimum-weight perfect-matching is unique is $1/2$. In the remainder of this discussion, we will assume that we have assigned the random weights in such a way that the minimum-weight perfect-matching in G is unique. We suppose that the weight of the edge connecting vertex i and j (if one exists), is $w(i, j)$.

Definition 2.9. If A is an $n \times n$ matrix, we will define $\bar{A}_{i,j} = \det(A'_{i,j})$, where $A'_{i,j}$ is the $n-1 \times n-1$ matrix that results from deleting the ith row and the jth column from A. We define the adjoint of A, denoted \hat{A} by

$$
\hat{A}_{i,j} = (-1)^{i+j} \bar{A}_{i,j}
$$

for all i and j between 1 and n.

Cramer’s Rule states that $A^{-1} = \hat{A}^{\text{tr}} / \det(A)$.

In order to describe this algorithm, we will need the concept of an incidence matrix of a bipartite graph.

Definition 2.10. Let $G = G(U, V, E)$ be a bipartite graph with $U = \{u_1, \ldots, u_m\}$ and $V = \{v_1, \ldots, v_n\}$. The incidence matrix of G is an $m \times n$ matrix A defined by

$$
A_{i,j} = \begin{cases} 1 & \text{if there exists an edge from } u_i \text{ to } v_j \\ 0 & \text{otherwise} \end{cases}
$$

This is closely related to the adjacency matrix of G, defined in 2.3 on page 291: if G is a bipartite graph with incidence matrix D and adjacency matrix A, then

$$
A = \begin{pmatrix} 0_{m,n} & D \\ D^{\text{tr}} & 0_{n,m} \end{pmatrix}
$$

where D^{tr} is the transpose of D and $0_{a,b}$ denotes a matrix with a rows and b columns, all of whose entries are zero. Note that, if a bipartite graph has a perfect matching, both of its vertex-sets will be exactly the same size, and its incidence matrix will be a square matrix.

We will construct a matrix, D, associated with G by the following sequence of operations:

1. Let C be the incidence matrix of G (defined above);
2. If $C_{i,j} = 1$ (so there is an edge connecting vertex i and vertex j), set $D_{i,j} \leftarrow 2^{w(i,j)}$.
3. If $C_{i,j} = 0$ set $D_{i,j} \leftarrow 0$.

This matrix D has the following interesting properties:

Lemma 2.11. Suppose the minimum-weight perfect matching in $G(U, V, E)$ is unique. Suppose this matching is $M \subseteq E$, and suppose its total weight is w. Then

$$
\frac{\det(D)}{2^w}
$$

is an odd number so that:

1. $\det(D) \neq 0$
2. the highest power of 2 that divides $\det(D)$ is 2^w.

We analyze the terms that enter into the determinant of D. Recall the definition of the determinant in 1.8 on page 139:

$$\det(D) = \sum_{i_1, \ldots, i_n \text{ all distinct}} \varphi(i_1, \ldots, i_n) D_{i_1, i_1} \cdots D_{i_n, i_n} \tag{125}$$

where $\varphi(i_1, \ldots, i_n)$ is the parity of the permutation $(\begin{smallmatrix} 1 & \cdots & n \\ i_1 & \cdots & i_n \end{smallmatrix})$ (defined in 1.7 on page 139).

Now we note that every perfect matching in G corresponds to a permutation of the numbers $\{1, \ldots, n\}$. Each such perfect matching, consequently, corresponds to a term in equation (125). Suppose σ is a permutation that corresponds to a perfect matching in G — this means that there is an edge connecting vertex i to vertex $\sigma(i)$ and we get

$$t(\sigma) = \varphi(\sigma) D_{1,\sigma(1)} \cdots D_{n,\sigma(n)} = \varphi(i_1, \ldots, i_n) 2^{w(1,\sigma(1))} \cdots 2^{w(n,\sigma(n))} = \varphi(i_1, \ldots, i_n) 2^{\sum_{j=1}^{n} w(j,\sigma(j))}$$

If a permutation σ doesn’t correspond to a perfect matching, then $t(\sigma) = 0$, since it will have some factor of the form $D_{i,\sigma(i)}$, where there is no edge connecting vertex i with vertex $\sigma(i)$.

Now we divide $\det(D)$ by 2^w. The quotient will have one term of the form ± 1, corresponding to the minimum-weight matching and other terms corresponding to higher-weight matchings. There will only be one term corresponding to the minimum-weight matching because it is unique (by assumption). The higher-weight matchings will give rise to terms in the quotient that are all even because the numbers in the D-matrix were powers of two that corresponded to the weights (which were higher, for these matchings). It follows that the number

$$\frac{\det(D)}{2^w}$$

is an odd number. □

The second lemma allows us to determine which edges lie in this minimum-weight matching:

Lemma 2.12. As before, suppose $M \subseteq E$ is the unique minimum-weight perfect matching in $G(U, V, E)$, suppose its total weight is w. Then an edge $e \in E$ connecting vertex $u_i \in U$ with vertex $v_j \in V$ is in M if and only if

$$\frac{2^{w(i,j)} \det(\tilde{D}_{i,j})}{2^w}$$

is an odd number.

Proof. This follows by an argument like that used in 2.11 above and the fact that determinants can be computed by expanding using minors. It is not hard to give a direct proof that has a more graph-theoretic flavor. Recall that $\tilde{D}_{i,j}$ is the matrix that result from deleting the ith row and jth column of D — it is the form of the D-matrix that corresponds to the result of deleting u_i from U and v_j from V. Call this new, smaller bipartite graph G'. It is not hard to see that G' also has
a unique minimum-weight matching — namely the one that result from deleting edge \(e \) from \(M \). Consequently, lemma 2.11 above, implies that

\[
\frac{\det(\bar{D}_{ij})}{2^{w-w(i,j)}}
\]

is an odd number. Here \(w - w(i,j) \) is the weight of this unique minimum-weight perfect matching in \(G' \) that result by deleting \(e \) from \(M \). But this proves the result.

All of the statements in this section depend upon the assumption that the minimum-weight perfect matching of \(G \) is unique. Since lemma 2.8 on page 412 implies that the probability of this is \(1/2 \), so we have a probabilistic algorithm. In fact, we have a Las Vegas algorithm, because it is very easy to verify whether the output of the algorithm constitutes a perfect matching. This means we have an \textbf{RNC} algorithm, since we need only execute the original probabilistic algorithm over and over again until it gives us a valid perfect matching for \(G \).

To implement this algorithm in parallel, we can use Csanky’s \textbf{NC} algorithm for the determinant — this requires \(O(n \cdot n^{2.376}) \) processors and executes in \(O(\log^2 n) \) time. Since we must compute one determinant for each of the \(m \) edges in the graph, our total processor requirement is \(O(n \cdot m \cdot n^{2.376}) \). Our expected execution-time is \(O(\log^2 n) \).

2.3.3. The General Case. Now we will explore the question of finding perfect matchings in general undirected graphs. We need several theoretical tools.

Definition 2.13. Let \(G = (V, E) \) be an undirected graph, such that \(|V| = n\). The Tutte matrix of \(G \), denoted \(t(G) \), is defined via

\[
t(G) = \begin{cases}
 x_{ij} & \text{if there exists an edge connecting } v_i \text{ with } v_j \text{ and } i < j \\
 -x_{ij} & \text{if there exists an edge connecting } v_i \text{ with } v_j \text{ and } i > j \\
 0 & \text{if } i = j
\end{cases}
\]

Here the quantities \(x_{i,j} \) with \(1 \leq i < j \leq n \) are indeterminates — i.e., variables.
For instance, if G is the graph in figure 7.3, then the Tutte matrix of G is

$$
\begin{pmatrix}
0 & x_{1,2} & x_{1,3} & 0 & x_{1,5} & x_{1,6} \\
-x_{1,2} & 0 & 0 & x_{2,4} & x_{2,5} & x_{2,6} \\
-x_{1,3} & 0 & 0 & x_{3,4} & x_{3,5} & 0 \\
0 & -x_{2,4} & -x_{3,4} & 0 & x_{4,5} & 0 \\
-x_{1,5} & -x_{2,5} & -x_{3,5} & -x_{4,5} & 0 & 0 \\
-x_{1,6} & -x_{2,6} & 0 & 0 & 0 & 0
\end{pmatrix}
$$

In [159], Tutte proved that these matrices have a remarkable property:

THEOREM 2.14. Tutte’s Theorem. Let G be a graph with Tutte matrix $t(G)$. If G does not have a perfect matching then $\det(t(G)) = 0$. If G has perfect matchings, then

$$
\det(t(G)) = (t_1 + \cdots + t_k)^2
$$

where the t_i are expressions of the form $\pm x_{\mu_1,\nu_1} \cdots x_{\mu_n,\nu_n}$, and the sets of edges \{(\mu_1, \nu_1), \ldots, (\mu_n, \nu_n)\} are the perfect matchings of G.

We will not prove this result. It turns out that the proof that it vanishes is very similar to part of the proof of 2.11 on page 413 — see [65]. If we compute this determinant of the Tutte matrix of the graph in figure 7.3, we get:

$$(x_{1,6}x_{2,4}x_{3,5} + x_{1,5}x_{3,4}x_{2,6} + x_{1,3}x_{2,6}x_{4,5} - x_{1,6}x_{2,5}x_{3,4})^2$$

so that this graph has precisely three distinct perfect matchings:

- \{(1,6), (2,4), (3,5)\},
- \{(1,3), (2,6), (4,5)\}, and
- \{(1,6), (2,5), (3,4)\}

Given this theorem, we can generalize the results of the previous section to general graphs fairly easily. As before we assume that we have a graph G that has a perfect matching, and we assign weights randomly to the edges of G. Now we define the D-matrix by the assignments $x_{ij} \leftarrow 2^{w(i,j)}$

in the Tutte matrix, for all $1 \leq i < j \leq n$. So our D-matrix is just the result of evaluating the Tutte matrix.

LEMMA 2.15. Suppose G is an weighted undirected graph with n vertices, that has a unique minimum-weight perfect matching. If w is the total weight of this perfect matching then w. Then

$$
\frac{\det(D)}{2^{2w}}
$$

is an odd number so that:

1. $\det(D) \neq 0$
2. the highest power of 2 that divides $\det(D)$ is 2^{2w}.

Note that we have to use 2^{2w} rather than 2^w because the sum of terms in the Tutte matrix is squared. The determinant of the incidence matrix of a bipartite graph had the same sum of terms, but the result wasn’t squared.

4Recall the definition of the determinant of a matrix in 1.8 on page 139.
2. THE CLASS \textbfrnc 417

PROOF. This proof is almost exactly the same as that of 2.11 on page 413 — Tutte’s theorem has done most of the work for us. It shows that $\det(D)$ in the present case has exactly the same form as $\det(D)^2$ in 2.11. □

Similarly, we get:

Lemma 2.16. As before, suppose $M \subseteq E$ is the unique minimum-weight perfect matching in G, and suppose its total weight is w. Then an edge $e \in E$ is in M if and only if

$$
\frac{2^{2w(i,j)} \det(\tilde{D}_{i,j})}{2^{2w}}
$$

is an odd number.

As before, we get a Las Vegas algorithm that executes in $O(\lg^2 n)$ time, using $O(n \cdot m \cdot n^{2.376})$ processors. This gives us an \textbfrnc algorithm with expected execution time of $O(\lg^2 n)$. All of this assumes that we know that the graph G has a perfect matching. If we don’t know this, Tutte’s theorem implies that $\det(D) = 0$. Unfortunately, if we get we don’t necessarily know that the graph didn’t have a perfect matching – we might have picked unlucky values for the weights of the edges to produce this result even though the determinant of the Tutte matrix is nonzero. If we don’t know whether the original graph had a perfect matching, our algorithm becomes an m-\textbfrnc algorithm that is biased in the direction of saying that there is a perfect matching.

2.4. The Maximal Independent-Set Problem.

2.4.1. Definition and statement of results. We will conclude this chapter by studying a very famous problem, whose first parallel solution represented something of a breakthrough.

Definition 2.17. Let $G = (V, E)$ denote an undirected graph with n vertices. A set, $S \subseteq V$, of vertices will be said to be independent if no two vertices in S are adjacent. An independent set of vertices, S, is said to be maximal, if every vertex $i \in V$ is adjacent to some element of S.

The problem of finding a maximal independent set has a trivial sequential solution — simply test all of the vertices of G, one by one. If a vertex is not adjacent to any element of S, then add it to S. It is not clear that there is any reasonable parallel solution that is NC — it appears that the choices one makes in any step of the sequential algorithm influences all future choices. This problem was long believed to be inherently sequential. Indeed, the lexicographically first version of the problem is known to be P-complete — see [31].

This algorithm was first discovered by Karp and Wigderson in 1984 — see [83]. They presented a probabilistic algorithm and then showed that, with a suitable choice of probability distribution, the algorithm became deterministic. Recall the notation of §1.4 and §3.7 in this chapter.

Algorithm 2.18. This is an algorithm for finding a maximal independent set within a graph, whose expected execution time is $O(\lg^2 n)$ with $O(n^2)$

- **Input:** Let $G = (V, E)$ be an undirected graph with $|V| = n$.
- **Output:** A maximal independent set $I \subseteq V$.
1. Initialization:
 \[I \leftarrow \emptyset \]
 \[G' \leftarrow G \]

2. Main loop:
 \[\text{while } G' \neq \emptyset \text{ do} \]
 \[I' \leftarrow \text{select}(G') \]
 \[I \leftarrow I \cup I' \]
 \[Y \leftarrow I' \cup \Gamma(I') \]
 \[G' = (V', E') \text{ is the induced subgraph in } V' \setminus Y \]
 \[\text{endwhile} \]

We have omitted an important detail in this description — the subroutine select:

ALGORITHM 2.19. The select subroutine. First version.

select(\(G' = (V', E')\))
\[I' \leftarrow V' \]
\[\text{define a random function } \pi \text{ of } V' \rightarrow V' \text{ by} \]
\[\text{for all } i' \in V' \text{ do in parallel} \]
\[\text{set } \pi(i') = \text{a random element of } V' \]
\[\text{endfor} \]
\[\text{for all edges } (i, j) \in E' \text{ do} \]
\[\text{if } \pi(i) \geq \pi(j) \text{ then} \]
\[I' \leftarrow I' \setminus \{i\} \]
\[\text{else} \]
\[I' \leftarrow I' \setminus \{j\} \]
\[\text{endfor} \]
\[\text{end (of select)} \]

It is not hard to see that select does select an independent set in \(G'\), so that the original algorithm selects a maximal independent set of the original graph. The only point that is still in question is the execution time of the algorithm. It will turn out that the expected number of iterations of the main loop in 2.18 is \(O(\lg^2 n)\) so the expected execution-time of the whole algorithm is \(O(\lg^2 n)\).

The random choices in the select step of this algorithm are made independently of each other.

The precise meaning of this statement is:

DEFINITION 2.20. Let \(\{E_1, \ldots, E_k\}\) be a finite sequence of events. These events are said to be independent if every subsequence \(\{E_{i_1}, \ldots, E_{i_j}\}\) satisfies
\[
\text{Prob}[E_{i_1} \cap \cdots \cap E_{i_j}] = \prod_{\ell=1}^{j} \text{Prob}[E_{i_{\ell}}]
\]

Karp and Wigderson made the very important observation that it is really only necessary to make pairwise independent selections for the algorithm to work properly. "Pairwise independence" just means that, of the sequence of events \(\{E_1, \ldots, E_k\}\), every pair of events satisfies the conditions of the definition above. In order to describe this we define:

DEFINITION 2.21. For each vertex \(i' \in V'\) define:
1. \(\text{deg}(i') = |\Gamma(i')| \);
2. \(\text{coin}(i') \) to be a \(\{0, 1\} \)-valued random variable such that
 a. if \(\text{deg}(i') \geq 1 \) then \(\text{coin}(i') = 1 \) with probability
 \[
 \frac{1}{2 \text{deg}(i')}
 \]
 and
 b. if \(\text{deg}(i') = 0 \), then \(\text{coin}(i') \) is always 1.

With this definition in mind, our new version of the select-step is

Algorithm 2.22. The select subroutine. Second version.

```plaintext
select(G' = (V', E'))
I' ← V'
X ← ∅
for all \( i' \in V' \) do in parallel
    compute \( \text{deg}(i') \)
endfor
for all \( i' \in V' \) do in parallel
    randomly choose a value for \( \text{coin}(i') \)
    if \( \text{coin}(i') = 1 \) then
        \( X ← X \cup \{i'\} \)
    endfor
for all edges \( (v_1, v_2) \in E' \) do in parallel
    if \( v_1 \in X \) and \( v_2 \in X \) then
        if \( \text{deg}(v_1) \leq \text{deg}(v_2) \) then
            \( I' ← I' \setminus \{v_1\} \)
        else
            \( I' ← I' \setminus \{v_2\} \)
        end
    end
end (of select)
```

Note that this second algorithm is somewhat more complicated than the first. The proof that the algorithms work is based upon the fact that, on average, at least \(1/16 \) of the edges are eliminated in each iteration. This implies that all of the edges are eliminated in \(O(\log n) \) expected iterations.

The second, more complicated algorithm, has the interesting property that the algorithm continues to be valid if we restrict the set of random variables \(\{\text{coin}(i)\} \), for all vertices \(i \) in the graph, to some set of size \(q^2 \), where \(q \) is some number that \(\geq n \) but bounded by a polynomial in \(n \). In other words, there are \(q^2 \) possible values for the set of \(n \) variables \(\{\text{coin}(i)\} \), such that there is a nonzero probability that at least \(1/16 \) of the edges will be eliminated in an iteration of the algorithms that uses values of \(\{\text{coin}(i)\} \) drawn from this set. Since the set is of size \(q^2 \), we can simply test each member of this set — i.e. we create processes that carry out an iteration of the algorithm using each of the members of the set. Since the probability of eliminating \(1/16 \) of the edges by using some member of this set is nonzero, it follows that at least one of the processes we have created must succeed in eliminating \(1/16 \) of the edges. Our textbfRNC algorithm becomes a deterministic algorithm.

We will describe how this sample space is constructed. We want the probability conditions in 2.21 to be satisfied.

We construct an \(n \times q \) matrix, \(M \), where \(q \) is the smallest prime \(> \sum_{i \in V} 2d(i) \). We will construct this matrix in such a way that row \(i \) (representing values of
coin(i) in different “coin tosses”) has the value 1 in precisely \(q/2d(i) \) entries, if \(d(i) \geq 1 \), and in all entries if \(d(i) = 0 \). The upshot will be that if we “draw” \(q \) entries from this row (i.e., all of them), the probability of a 1 occurring is \(1/2d(i) \), as specified in 2.21 above. The entries in \(M \) are otherwise random.

Now we define a total of \(q^2 \) values of the set \(\{ \text{coin}(1), \ldots, \text{coin}(n) \} \), where we have numbered the vertices of the graph. Let \(x \) and \(y \) be integers such that \(0 \leq x, y \leq q - 1 \). Then there are \(q^2 \) possible values of the pairs \((x, y) \). We will index our sets \(\{ \text{coin}(1), \ldots, \text{coin}(n) \} \) by these pairs. Define

\[
\text{coin}_{(x,y)}(i) = M_{i,(x+i \cdot y \mod q)}
\]

Lemma 2.23. The probability that \(\text{coin}(i) = 1 \) satisfies the conditions in 2.21.

Proof. Let the probability that \(\text{coin}(i) = 1 \) required by 2.21, be \(R_i \). We have put \(q \cdot R_i \) entries equal to 1 into the matrix \(M \). For any value \(j \) there are precisely \(q \) pairs \((x, y) \) such that

\[
(x + i \cdot y) \mod q = j
\]

— this just follows from 3.41 on page 365, which implies that given any value of \(x \) we can solve for a corresponding value of \(y \) that satisfies the equation: \(y = i^{-1}(j - x) \mod q \) — here \(i^{-1} \) is the multiplicative inverse of \(i \mod q \). It follows that there are \(q \cdot R_i \) values of \(j \) that make \(M_{i,(x+i \cdot y \mod q)} = 1 \).

Lemma 2.24. Given \(i, i' \), the probability that \(\text{coin}(i) = 1 \) and \(\text{coin}(i') = 1 \) simultaneously, is the product of the probabilities that each of them are 1 individually.

This lemma implies that the random variables generated by the scheme described above, are pairwise independent.

Proof. We use the notation of the proof of 2.23 above. We must show that the probability that \(\text{coin}(i) = 1 \) and \(\text{coin}(i') = 1 \) occur simultaneously, is equal to \(R_i R_{i'} \). Given any pair of numbers \(j \) and \(j' \) such that \(0 \leq j, j' \leq q - 1 \), the simultaneous equations

\[
x + i \cdot y \mod q = j
\]

\[
x + i' \cdot y \mod q = j'
\]

have a unique solution (for \(x \) and \(y \)). If there are \(a = R_i q \) entries in \(M \) that produce a value of 1 for \(\text{coin}(i) \) and \(b = R_{i'} q \) entries that produce a value of 1, then there are \(ab \) pairs \((j, j') \) that simultaneously produce 1 in \(\text{coin}(i) \) and \(\text{coin}(i') \). Each such pair (of entries of \(M \)) corresponds to a unique value of \(x \) and \(y \) that causes that pair to be selected. Consequently, there are \(ab \) cases in the \(q^2 \) sets of numbers \(\{ \text{coin}(1), \ldots, \text{coin}(n) \} \). The probability that that \(\text{coin}(i) = 1 \) and \(\text{coin}(i') = 1 \) occur simultaneously is, therefore, \(ab/q^2 \), as claimed.

With these results in mind, we get the following deterministic version of the Maximal Independent Set algorithm:

Algorithm 2.25. The Deterministic Algorithm. This is an algorithm for finding a maximal independent set within a graph, whose execution time is \(O(\lg^2 n) \) with \(O(mn^2) \) processors (where \(m \) is the number of edges of the graph).

- **Input:** Let \(G = (V, E) \) be an undirected graph with \(|V| = n \).
- **Output:** A maximal independent set \(I \subseteq V \).
1. **Initialization:**

 \[I \leftarrow \emptyset \]
 \[n \leftarrow |V| \]

 Compute a prime \(q \) such that \(n \leq q \leq 2n \)

 \[G' = (V', E') \leftarrow G = (V, E) \]

2. **Main loop:**

 while \(G' \neq \emptyset \) do

 for all \(i \in V' \) do in parallel

 Compute \(d(i) \)

 endfor

 for all \(i \in V' \) do in parallel

 if \(d(i) = 0 \) then

 \[I \leftarrow I \cup \{i\} \]
 \[V \leftarrow V \setminus \{i\} \]

 endif

 endfor

 find \(i \in V' \) such that \(d(i) \) is a maximum

 if \(d(i) \geq n/16 \) then

 \[I \leftarrow I \cup \{i\} \]
 \[G' \leftarrow \text{graph induced on the vertices} \]
 \[V' \setminus (\{i\} \cup \Gamma(\{i\})) \]

 else for all \(i \in V', d(i) < n/16 \)

 randomly choose \(x \) and \(y \) such that \(0 \leq x, y \leq q - 1 \)

 \[X \leftarrow \emptyset \]

 for all \(i \in V' \) do in parallel

 compute \(n(i) = \lfloor q/2d(i) \rfloor \)

 compute \(l(i) = (x + y \cdot i) \mod q \)

 if \(l(i) \leq n(i) \) then

 \[X \leftarrow X \cup \{i\} \]

 endif

 endfor

 \[I' \leftarrow X \]

 for all \(i \in X, j \in X \) do in parallel

 if \((i, j) \in E' \) then

 if \(d(i) \leq d(j) \) then

 \[I' \leftarrow I' \setminus \{i\} \]
 \[I \leftarrow I \cup I' \]
 \[Y \leftarrow I' \cup \Gamma(I') \]
 \[G' = (V', E') \text{ is the induced subgraph on } V' \setminus Y \]

 endif

 endif

 endfor

 endwhile

2.4.2. **Proof of the main results.** The following results prove that the expected execution-time of 2.19 is poly-logarithmic. We begin by defining:

Definition 2.26. For all \(i \in V' \) such that \(d(i) \geq 1 \) we define

\[s(i) = \sum_{j \in \Gamma(i)} \frac{1}{d(j)} \]

We will also need the following technical result:
Lemma 2.27. Let $p_1 \geq \cdots \geq p_n \geq 0$ be real-valued variables. For $1 \leq k \leq n$, let

$$
\alpha_\ell = \sum_{j=1}^{k} p_j \\
\beta_\ell = \sum_{j=1}^{k} \sum_{\ell=j+1}^{k} p_j \cdot p_\ell \\
\gamma_i = \alpha_i - c \cdot \beta_i
$$

where c is some constant $c > 0$. Then

$$
\max\{\gamma_k | 1 \leq k \leq n\} \geq \frac{1}{2} \cdot \min\left\{\frac{1}{c} \cdot \alpha_n\right\}
$$

Proof. We can show that β_k is maximized when $p_1 = \cdots = p_n = \alpha_k/k$. This is just a problem of constrained maximization, where the constraint is that the value of $\alpha_k = \sum_{j=1}^{k} p_j$ is fixed. We solve this problem by Lagrange’s Method of Undetermined Multipliers — we maximize

$$
Z = \beta_k + \lambda \cdot \alpha_k
$$

where λ is some quantity to be determined later. We take the partial derivatives of Z with respect to the p_j to get

$$
\frac{\partial Z}{\partial p_t} = \left(\sum_{j=1}^{k} p_j \right) - p_t + \lambda
$$

(simply note that p_t is paired with every other p_j for $0 \leq j \leq k$ in the formula for β_k). If we set all of these to zero, we get that the p_j must all be equal.

Consequently $\beta_k \leq \alpha_k^2 \cdot (k-1)/2k$. Thus

$$
\gamma_k \geq \alpha_k \cdot \left(1 - \frac{\alpha_k \cdot (k-1)}{2k} \right)
$$

If $\alpha_n \leq 1/c$ then $\gamma_n \geq \alpha_n/c$. If $\alpha_k \geq 1/c$ then $\gamma_1 \geq 1/c$. Otherwise there exists a value of k such that $\alpha_k-1 \leq 1/c \leq \alpha_k \leq 1/c \cdot k/(k-1)$. The last inequality follows because $p_1 \geq \cdots \geq p_n$. Then $\gamma_k \geq 1/2c$. □

Proposition 2.28. Principle of Inclusion and Exclusion. Let E_1 and E_2 be two events. Then:

1. If E_1 and E_2 are mutually exclusive then

$$
\text{Prob} \left[E_1 \cup E_2 \right] = \text{Prob} \left[E_1 \right] + \text{Prob} \left[E_2 \right]
$$

2. In general

$$
\text{Prob} \left[E_1 \cup E_2 \right] = \text{Prob} \left[E_1 \right] + \text{Prob} \left[E_2 \right] - \text{Prob} \left[E_1 \cap E_2 \right]
$$
3. and in more generality

\[\text{Prob} \left[\bigcup_{j=1}^{k} E_j \right] = \sum_{i} \text{Prob} \left[E_i \right] - \sum_{i_{1}<i_{2}} \text{Prob} \left[E_{i_{1}} \cap E_{i_{2}} \right] \]

\[+ \sum_{i_{1}<i_{2}<i_{3}} \text{Prob} \left[E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}} \cdots \right] \]

\[\text{Prob} \left[\bigcup_{j=1}^{k} E_j \right] \geq \sum_{i} \text{Prob} \left[E_i \right] - \sum_{i_{1}<i_{2}} \text{Prob} \left[E_{i_{1}} \cap E_{i_{2}} \right] \]

Essentially, the probability that \(\text{Prob} \left[E_i \right] \) occurs satisfies the conditions that

\[\text{Prob} \left[E_1 \right] = \text{Prob} \left[E_1 \cap \neg E_2 \right] + \text{Prob} \left[E_1 \cap E_2 \right] \]

\[\text{Prob} \left[E_2 \right] = \text{Prob} \left[E_2 \cap \neg E_1 \right] + \text{Prob} \left[E_1 \cap E_2 \right] \]

where \(\text{Prob} \left[E_1 \cap \neg E_2 \right] \) is the probability that \(E_1 \) occurs, but \(E_2 \) doesn’t occur. If we add \(\text{Prob} \left[E_1 \right] \) and \(\text{Prob} \left[E_2 \right] \), the probability \(\text{Prob} \left[E_1 \cap E_2 \right] \) is counted twice, so be must subtract it out.

The third statement can be proved from the second by induction.

Definition 2.29. Conditional Probabilities. Let \(\text{Prob} \left[E_1 | E_2 \right] \) denote the conditional probability that \(E_1 \) occurs, given that \(E_2 \) occurs. It satisfies the formula

\[\text{Prob} \left[E_1 | E_2 \right] = \frac{\text{Prob} \left[E_1 \cap E_2 \right]}{\text{Prob} \left[E_2 \right]} \]

Theorem 2.30. Let \(Y^1_k \) and \(Y^2_k \) be the number of edges in the graph \(E' \) before the \(k \)th execution of the while-loop of algorithms 2.19 and 2.22, respectively. If \(E(*) \) denotes expected value, then

1. \(E[Y^1_k - Y^1_{k+1}] \geq \frac{1}{8} \cdot Y^1_k - \frac{1}{16} \).
2. \(E[Y^2_k - Y^2_{k+1}] \geq \frac{1}{8} \cdot Y^2_k \).

In the case where the random variables \{\text{coin}(*)\} in 2.22 are only pairwise independent, we have

\[E[Y^2_k - Y^2_{k+1}] \geq \frac{1}{16} Y^2_k \]

This result shows that the number of edges eliminated in each iteration of the while-loop is a fraction of the number of edges that existed.

Proof. Let \(G' = (V', E') \) be the graph before the \(k \)th execution of the body of the while-loop. The edges eliminated due to the \(k \)th execution of the body of the while-loop are the edges with at least one endpoint in the set \(I' \cup \Gamma(I') \), i.e., each edge \((i, j)\) is eliminated either because \(i \in I' \cup \Gamma(I') \) or because \(j \in I' \cup \Gamma(I') \), due to the line \(V' \leftarrow V' \setminus (I' \cup \Gamma(I')) \) in 2.18. Thus

\[E[Y^2_k \setminus Y^2_{k+1}] \geq \frac{1}{2} \cdot \sum_{i \in V'} d(i) \cdot \text{Prob} \left[i \in I' \cup \Gamma(I') \right] \]

\[\geq \frac{1}{2} \cdot \sum_{i \in V'} d(i) \cdot \text{Prob} \left[i \in \Gamma(I') \right] \]

Here \(\text{Prob} \left[i \in I' \cup \Gamma(I') \right] \) is the probability that a vertex \(i \) is in the set \(I' \cup \Gamma(I') \). We will now try to compute these probabilities. In order to do this, we need two additional results: \(\Box \)
LEMMA 2.31. For algorithm 2.19, and all \(i \in V' \) such that \(d(i) \geq 1 \)

\[
\Pr [i \in \Gamma(I')] \geq \frac{1}{4} \cdot \min\{s(i), 1\} \cdot \left(1 - \frac{1}{2n^2}\right)
\]

PROOF. We assume that \(\pi \) is a random permutation of the vertices of \(V' \) — this occurs with a probability of at least \(1 - 1/2n^2 \). For all \(j \in V' \) define \(E_j \) to be the event that

\[\pi(j) < \min\{\pi(k) | k \in \Gamma(j)\} \]

(in the notation of 2.18). Set

\[p_i = \Pr [E_j] = \frac{1}{d(i) + 1} \]

and

\[\Gamma(i) = \{1, \ldots, d(i)\} \]

Then, by the principle of inclusion-exclusion (Proposition 2.28 on page 422), for \(1 \leq k \leq d(i) \),

\[
\Pr [i \in \Gamma(I')] \geq \Pr \left(\bigcup_{j=1}^{k} E_j\right) \geq \sum_{j=1}^{k} p_j - \sum_{j=1}^{k} \sum_{\ell=j+1}^{k} \Pr [E_j \cap E_\ell]
\]

For fixed \(j, \ell \) such that \(1 \leq j < \ell \leq k \), let \(E'_j \) be the event that

\[\pi(j) < \min\{\pi(u) | u \in \Gamma(j) \cup \Gamma(\ell)\} \]

and let \(E'_\ell \) be the event that

\[\pi(\ell) < \min\{\pi(u) | u \in \Gamma(j) \cup \Gamma(\ell)\} \]

Let

\[d(j, \ell) = |\Gamma(j) \cup \Gamma(\ell)| \]

Then,

\[
\Pr [E_j \cap E_\ell] \leq \Pr [E'_j] \cdot \Pr [E_\ell | E'_j] + \Pr [E'_\ell] \cdot \Pr [E_j | E'_\ell]
\]

\[
\leq \frac{1}{d(j, \ell) + 1} \cdot \left(\frac{1}{d(k) + 1} + \frac{1}{d(j) + 1}\right) \leq 2 \cdot p_j \cdot p_\ell
\]

let \(\alpha = \sum_{j=1}^{d(i)} p_j \). Then, by 2.27,

\[
\Pr [i \in \Gamma(I')] \geq \frac{1}{2} \cdot \min(\alpha, 1/2) \geq \frac{1}{4} \cdot \min\{s(i), 1\}
\]

which proves the conclusion. \(\square \)

LEMMA 2.32. In algorithm 2.22 (page 419), for all \(i \in V' \) such that \(d(i) \geq 1 \)

\[
\Pr [i \in \Gamma(I')] \geq \frac{1}{4} \cdot \min\left\{\frac{s(i)}{2}, 1\right\}
\]

PROOF. For all \(j \in V' \) let \(E_j \) be the event that \(\text{coin}(j) = 1 \) and

\[
p_j = \Pr [E_j] = \frac{1}{2d(i)}
\]

Without loss of generality, assume that

\[\Gamma(i) = \{1, \ldots, d(i)\} \]
and assume that

\[p_1 \geq \cdots \geq p_d(i) \]

Let \(E'_i = E_1 \) and for \(2 \leq j \leq d(i) \) let

\[E'_j = \left(\bigcap_{k=1}^{j-1} \neg E_k \right) \cap E_j \]

Note that \(E'_j \) is the event that \(E_j \) occurs and \(\{E_1, \ldots, E_{j-1}\} \) do not occur. Let

(127)

\[A_j = \bigcap_{\ell \in \Gamma(j), d(\ell) \geq d(i)} \neg E_\ell \]

This is the probability that none of the coin(*) variables are 1, for neighboring vertices \(\ell \) with \(d(\ell) \geq d(j) \). Then

\[\text{Prob} \left[i \in \Gamma(I') \right] \geq \frac{1}{2} \cdot \min \left\{ \frac{s(i)}{2}, 1 \right\} \]

\[\text{PROOF.} \text{ Let } \alpha_0 = 0 \text{ and for } 1 \leq \ell \leq d(i), \text{ let } \alpha_\ell = \sum_{j=1}^{\ell} p_j \rightarrow p_k \text{ (since the events are independent). Thus, by the principle of inclusion-exclusion, for } 1 \leq \ell \leq d(i), \]

\[\text{Prob} \left[\bigcup_{j=1}^{d(i)} E_j \right] = \text{Prob} \left[\bigcup_{j=1}^{\ell} E_j \right] \geq \sum_{j=1}^{\ell} p_j - \sum_{j=1}^{\ell} \sum_{k=j+1}^{\ell} p_j \cdot p_k \]

Let \(\alpha = \sum_{j=1}^{d(i)} p_j \). The technical lemma, 2.27 on page 422, implies that

\[\text{Prob} \left[i \in \Gamma(I') \right] \geq \frac{1}{2} \cdot \min \left\{ \sum_{j=1}^{i} p_j, 1 \right\} \]

It follows that \(\text{Prob} \left[i \in \Gamma(I') \right] \geq \frac{1}{4} \cdot \min \{s(i)/2, 1\}. \]

Now we will consider how this result must be modified when the random variables \{coin(i)\} are only pairwise independent.

Lemma 2.33. \(\text{Prob} \left[i \in \Gamma(I') \right] \geq \frac{1}{8} \cdot \min \{s(i), 1\} \)

Proof. Let \(\alpha_0 = 0 \) and for \(1 \leq \ell \leq d(i) \), let \(\alpha_\ell = \sum_{j=1}^{\ell} p_j \). As in the proof of 2.32 above, we show that

\[\text{Prob} \left[i \in \Gamma(I') \right] \geq \sum_{j=1}^{d(i)} \text{Prob} \left[E'_j \right] \cdot \text{Prob} \left[A_j | E'_j \right] \]
where the \(\{A_j\} \) are defined in equation (127) on page 425 and \(E'_j \) is defined in equation (126) on page 424. We begin by finding a lower bound on \(\text{Prob} [A_j|E'_j] \):

\[
\text{Prob} [A_j|E'_j] = 1 - \text{Prob} [-A_j|E'_j].
\]

However

\[
\text{Prob} [-A_j|E'_j] \leq \sum_{v \in \Gamma(j)} \text{Prob} [E_v|E'_j]d(v) \geq d(j)
\]

and

\[
\text{Prob} [E_v|E'_j] = \frac{\text{Prob} [E_v \cap -E_1 \cap \cdots \cap -E_{j-1}]}{\text{Prob} [-E_1 \cap \cdots \cap -E_{j-1}|E'_j]}
\]

The numerator is \(\leq \text{Prob} [E_v|E'_j] = p_v \) and the denominator is

\[
1 - \text{Prob} \left(\bigcup_{\ell=1}^{j-1} E_\ell|E_j \right) \geq 1 - \sum_{\ell=1}^{j-1} \text{Prob} [E_\ell|E_j] = 1 - \alpha_{j-1}
\]

Thus \(\text{Prob} [E_v|E'_j] \leq p_v/(1 - \alpha_{j-1}) \). Consequently,

\[
\text{Prob} [-A_j|E'_j] \leq \sum_{v \in \Gamma(j)} \frac{p_v}{1 - \alpha_{j-1}} \leq \frac{1}{2(1 - \alpha_{j-1})}
\]

and

\[
\text{Prob} [A_j|E'_j] \geq 1 - \frac{1}{1 - \alpha_{j-1}} = \frac{1 - 2\alpha_{j-1}}{2(1 - \alpha_{j-1})}
\]

Now we derive a lower bound on \(\text{Prob} [E'_j] \):

\[
\text{Prob} [E'_j] = \text{Prob} [E_j] \text{Prob} [-E_1 \cap \cdots \cap -E_{j-1}|E_j]
\]

\[
= p_j \left(1 - \text{Prob} \left(\bigcup_{\ell=1}^{j-1} E_\ell|E_j \right) \right) \geq p_j(1 - \alpha_{j-1})
\]

Thus, for \(1 \leq \ell \leq d(v) \) and \(\alpha_\ell < \frac{1}{2} \),

\[
\text{Prob} [i \in \Gamma(I')] \geq \sum_{j=1}^{\ell} p_j(1 - 2\alpha_{j-1}) = \frac{1}{2} \cdot \left(\sum_{j=1}^{\ell} p_j - 2 \cdot \sum_{j=1}^{\ell} \sum_{k=j+1}^{\ell} p_j \cdot p_k \right)
\]

At this point 2.27 on page 422 implies

\[
\text{Prob} [i \in \Gamma(I')] \geq \frac{1}{4} \cdot \min \{\alpha_{d(i)}, 1\}
\]

\(\square \)

3. Further reading

As mentioned on page 331, Aggarwal and Anderson found an textbf{RNC} algorithm for depth-first search of general graphs. The algorithm for finding a maximal matching in \(\S 2.3.3 \) on page 415 is an important subroutine for this algorithm.

There are a number of probabilistic algorithms for solving problems in linear algebra, including:
• Computing the rank of a matrix — see [18] by Borodin, von zur Gathen, and Hopcroft. This paper also gives probabilistic algorithms for greatest common divisors of elements of an algebraic number field. Gathen

• Finding various normal forms of a matrix. See the discussion of normal forms of matrices on page 178. In [81], Kaltofen, Krishnamoorthy, and Saunders present textbfRNC algorithms for computing these normal forms.

In [134], Reif and Sen give textbfRNC algorithms for a number of problems that arise in connection with computational geometry.
APPENDIX A

Solutions to Selected Exercises

Chapter A, § 0, 1.1(p.10) We use induction on \(k \). The algorithm clearly works for \(k = 1 \). Now we assume that it works for some value of \(k \) and we prove it works for \(k + 1 \). In the \(2^{k+1} \)-element case, the first \(k \) steps of the algorithm perform the \(2^k \)-element version of the algorithm on the lower and upper halves of the set of \(2^{k+1} \) elements. The \(k + 1 \)st step, then adds the rightmost element of the cumulative sum of the lower half to all of the elements of the upper half.

Chapter A, § 0, 3.2(p.23) Yes, it is possible for a sorting algorithm to not be equivalent to a sorting network. This is usually true for enumeration sorts. These sorting algorithms typically perform a series of computations to determine the final position that each input data-item will have in the output, and then move the data to its final position. On a parallel computer, this final move-operation can be a single step. Neither the computations of final position, nor the mass data-movement operation can be implemented by a sorting network.

Chapter A, § 0, 3.3(p.23) The proof is based upon the following set of facts (we are assuming that the numbers are being sorted in ascending sequence and that larger numbers go to the right):

1. The rightmost 1 starts to move to the right in the first or second time unit;
2. after the rightmost 1 starts to move to the right it continues to move in each time until until it reaches position \(n \) — and each move results in a zero being put into its previous position;
3. 1 and 2 imply that after the second time unit the second rightmost 1 plays the same role that the rightmost originally played — consequently it starts to move within 1 more time unit;
4. a simple induction implies that by time unit \(k \) the \(k - 1 \)st rightmost 1 has started to move to the right and will continue to move right in each time unit (until it reaches its final position);
5. the \(k - 1 \)st rightmost 1 has a maximum distance of \(n - k + 1 \) units to travel — but this is also equal to the maximum number of program steps that the 1 will move to the right by statement d above. Consequently it will be sorted into its proper position by the algorithm;

Chapter A, § 0, 3.4(p.23) 1. The answer to the first part of the question is no. In order to see this, consider a problem in which all of the alternative approaches to solving the problem have roughly the same expected running time.
2. The conditions for super-unitary speedup were stated in a rough form in the discussion that preceded the example on page 13. If we have \(n \) processors available, we get super-unitary speedup in an AI-type search problem.
whenever the expected minimum running time of \(n \) distinct alternatives is less than \(1/n \) of the average running time of all of the alternatives.

Chapter A, § 0, 3.5(p.24) Proof. We make use of the 0-1 Principle. Suppose the \(A \)-sequence is \(\{1, \ldots, 1, 0, \ldots, 0\} \), and the \(B \)-sequence \(\{1, \ldots, 1, 0, \ldots, 0\} \). Then

1. \(\{A_1, A_3, \ldots, A_{2k-1}\} \) is \(\{1, \ldots, 1, 0, \ldots, 0\} \); \([r/2] \) 1’s
2. \(\{A_2, A_4, \ldots, A_{2k}\} \) is \(\{1, \ldots, 1, 0, \ldots, 0\} \); \([s/2] \) 1’s
3. \(\{B_1, B_3, \ldots, B_{2k-1}\} \) is \(\{1, \ldots, 1, 0, \ldots, 0\} \); \([(r+1)/2] \) 1’s
4. \(\{B_2, B_4, \ldots, B_{2k}\} \) is \(\{1, \ldots, 1, 0, \ldots, 0\} \); \([(s+1)/2] \) 1’s

Now, if we correctly merge \(\{A_1, A_3, \ldots, A_{2k-1}\} \) and \(\{B_1, B_3, \ldots, B_{2k-1}\} \), we get \(\{1, \ldots, 1, 0, \ldots, 0\} \). Similarly, the result of merging the two even-sequences \([(r+1)/2] + [(s+1)/2] \) 1’s together results in \(\{1, \ldots, 1, 0, \ldots, 0\} \). There are three possibilities now:

1. \(r \) and \(s \) are both even. Suppose \(r = 2u, s = 2v \). Then \([(r+1)/2] + [(s+1)/2] = u + v \) and \([r/2] + [s/2] = u + v \). These are the positions of the rightmost 1’s in the merged odd and even sequences, so the result of shuffling them together will be \(\{1, \ldots, 1, 0, \ldots, 0\} \), the correct merged result.

2. One of the quantities \(r \) and \(s \) is odd. Suppose \(r = 2u - 1, s = 2v \). Then \([(r+1)/2] + [(s+1)/2] = u + v \) and \([r/2] + [s/2] = u + v - 1 \), so the rightmost 1 in the merged even sequence is one position to the left of the rightmost 1 of the merged odd sequence. In this case we will still get the correct result when we shuffle the two merged sequences together. This is due to the fact that the individual terms of the even sequence get shuffled to the right of the terms of the odd sequence.

3. Both \(r \) and \(s \) are odd. Suppose \(r = 2u - 1, s = 2v - 1 \). Then \([(r+1)/2] + [(s+1)/2] = u + v \) and \([r/2] + [s/2] = u + v - 2 \). In this case the rightmost 1 in the even sequence is two positions to the left of the rightmost 1 of the odd sequence. After shuffling the sequences together we get \(\{1, \ldots, 1, 0, 1, 0, \ldots, 0\} \). In this case we must interchange a pair of adjacent elements to put the result in correct sorted order. The two elements that are interchanged are in positions \(2(u + v - 1) = r + s - 1 \) and \(r + s \).

Chapter A, § 0, 5.1(p.28) We have to modify the second part of the CRCW write operation. Instead of merely selecting the lowest-numbered processor in a run of processors, we compute the sum, using the parallel algorithm on page 7. The execution-time of the resulting algorithm is asymptotically the same as that of the original simulation.
Chapter A, § 0, 5.4(p.44) We need only simulate a single comparator in terms of a computation network. This is trivial if we make the vertices of the computation network compute max and min of two numbers.

Chapter A, § 0, 3.1(p.66) The idea here is to transmit the information to one of the low-ranked processors, and then transmit it down to all of the other processors. First send the data to the processor at rank 0 in column 0.

Chapter A, § 0, 3.5(p.71) The idea is to prove this via induction on the dimension of the hypercube and the degree of the butterfly network. The statement is clearly true when these numbers are both 1. A degree $k + 1$ butterfly network decomposes into two degree-k butterflies when the vertices of the 0^th rank are deleted (see statement 3.1 on page 62). A corresponding property exists for hypercubes:

A $k + 1$-dimensional hypercube is equal to two k-dimensional hypercubes with corresponding vertices connected with edges.

The only difference between this and the degree $k + 1$ butterfly network is that, when we restore the 0^th rank to the butterfly network (it was deleted above) corresponding columns of the two degree-k sub-butterflies are connected by two edges — one at a 45° angle, and the other at a 135° angle, in figure 3.2 on page 61).

Chapter A, § 0, 4.1(p.84) We will map the vertical columns of a butterfly network into the cycles of the CCC network:

First consider the trivial case of degree 1:

Here the lightly shaded edge represents the edge that has to be removed from the butterfly to give the CCC.

In degree 2 we can take two degree 1 CCC’s with opposite edges removed and combine them together to get:

and similarly in degree 3:
Note that column 0 has the property that all ascending diagonal lines have been deleted. The fact that it must be possible to simulate the full butterfly by traversing two edges of the subgraph implies that every column whose number is of the form $2s$ must have all of its ascending diagonals intact. The fact that every node can have at most 3 incident edges implies that every column whose number is a sum of two distinct powers of 2 must have its ascending diagonals deleted. The general rule is as follows:

The ascending diagonal communication lines of column t are deleted if and only if the number of 1’s in the binary representation of the number t is even.

As for the mapping of the algorithm 4.5 on page 82:

- The F-LOOP operation maps into a transmission of data to lower ranked processors on vertical communication-lines;
- The B-LOOP operation maps into a transmission of data to higher ranked processors on vertical communication-lines;
- The Lateral move operation maps into a transmission of data on the (remaining) diagonal communication-lines (recall that many of them were deleted in the step above).

Chapter A, § 0, 3.1(p.126) The CM-2 computer, in its simplest version, has four sequencers. These fit onto front-end computers and transmit instructions to the processors. Consequently, it is possible to subdivide a CM-2 computer into four partitions of 8192 processors each, and to have four distinct programs running on it simultaneously. (The system software allows the user to request any amount of processors he or she desires, up to the 64K limit.) Consequently, the number K can be set to 4. The amount of pipelining that is performed depends upon the front-end computer, so K' is essentially undefined (unless the characteristics of the front-end computer are known), but ≥ 1. There is no pipelining of arithmetic operations\(^1\). The word-size parameters are hard to define, since all operations can use variable-size words, but if we program in C*, we can assume 32 bits. We get:

$$< 4 \times 1, 8912 \times 1, 32 \times 1 >$$

\(^1\) This is even a complex issue — some operations are the pipelined result of several other operations.
A. SOLUTIONS TO SELECTED EXERCISES 433

Chapter A, § 0, 3.3(p.126) We must allocate a shape of processors that has one dimension for each level of nested indexing. If a variable is defined at a given level, and we must refer to it at deeper levels, we must use explicit left indices for all of the levels at which it is defined. In the code fragment above, we must define A within a two-dimensional shape, and t in a one-dimensional shape. When we refer to t we must explicitly refer to its left-index, since we are using it (in the algorithm) at a deeper level of nested parallelism than that at which it was defined — we get:

```c
with(twoshape)
{
    [pcoord(0)]t=MAXINT;
    where (A==2)
    [pcoord(0)]t <?= pcoord(1);
}
```

Note that before we can find the minimum, we must set t to MAXINT, since the semantics of the $<?$= operation imply that the value of t is compared with the values of $pcoord(1)$ when the minimum is taken. If t started out being $<$ all of the existing values of $pcoord(1)$ that satisfy the criterion above, t would be unchanged.

Chapter A, § 0, 1.1(p.146) This follows by straight computation — let $v = \alpha v_1 + \beta v_2$ be a linear combination of v_1 and v_2. Then

$$A(\alpha v_1 + \beta v_2) = (\lambda_1 \alpha v_1 + \lambda_2 \beta v_2)$$

$$= (\lambda_1 \alpha v_1 + \lambda_1 \beta v_2) \quad \text{(since } \lambda_1 = \lambda_2)$$

$$= \lambda_1 (\alpha v_1 + \beta v_2)$$

$$= \lambda_1 v$$

So v is an eigenvector of λ_1.

Chapter A, § 0, 1.2(p.146) Suppose that

$$S = \sum_{i=1}^{\ell} \alpha_{ij} v_j = 0 \quad \text{(128)}$$

is the smallest possible expression with none of the $\alpha_{ij} = 0$ — the fact that the vectors are nonzero implies that any expression of size 1 cannot be zero (if it has a nonzero coefficient), so there is a lower bound to the possible size of such expressions. Now multiply this entire expression on the left by A — the definition of an eigenvalue implies that the result is

$$\sum_{i=1}^{\ell} \lambda_{ij} \alpha_{ij} v_j = 0 \quad \text{(129)}$$

Now we use the fact that the eigenvalues $\{\lambda_{ij}\}$ are all distinct. We subtract $\lambda_i v_i$ from equation (128) to get

$$\sum_{i=1}^{\ell} (\lambda_{ij} - \lambda_i) \alpha_{ij} v_j = 0$$

— the first term has canceled out, and the remaining terms are nonzero because the eigenvalues are all distinct. This is a smaller expression that the one we started
with that has nonzero coefficients. This contradicts our assumption that we had the smallest possible such expression and implies that no such expression exists.

Chapter A, § 0, 1.6 (p. 147) We compute the polynomial \(\det(A - \lambda \cdot I) = -\lambda^3 + 14\lambda + 15 \), and the roots are \(\{-3, 3/2 + 1/2\sqrt{29}, 3/2 - 1/2\sqrt{29}\} \) — these are the eigenvalues. To compute the eigenvectors just solve the equations:

\[Ax = \lambda x \]

for each of these. The eigenvectors are well-defined up to a scalar factor. The eigenvector for \(-3\) is the solution of the equation \(Ax = -3x \), so \(x \) is \([-2, 1, 2]\).

The eigenvector for \(3/2 + 1/2\sqrt{29}\) is \([1/2 + 1/6\sqrt{29}, 1/6 + 1/6\sqrt{29}, 1]\), and the eigenvector for \(3/2 - 1/2\sqrt{29}\) is \([1/2 - 1/6\sqrt{29}, -1/6 - 1/6\sqrt{29}, 1]\).

The spectral radius of this matrix is \(3/2 + 1/2\sqrt{29}\).

Chapter A, § 0, 1.7 (p. 147) We will use define the 2-norm to be \(\|A\|_2 = \max_{\|v\|_2=1} \|Av\|_2 \). We must maximize the expression

\[(x + 2y)^2 + (3x - y)^2 = 10x^2 - 2xy + 5y^2 \]

subject to the condition that \(x^2 + y^2 = 1\). We use the method of Lagrange Undetermined multipliers — we try to maximize the expression

\[10x^2 - 2xy + 5y^2 + \mu(x^2 + y^2 - 1) \]

where \(x\) and \(y\) are not subject to any condition. The derivative with respect to \(x\) is

\[(20 + 2\mu)x - 2y \]

and the derivative with respect to \(y\) is

\[(10 + 2\mu)y - 2x \]

If we set both of these to 0 we get the equations:

\[(20 + 2\mu)x = 2y \]
\[(10 + 2\mu)y = 2x \]

or

\[(10 + \mu)x = y \]
\[(5 + \mu)y = x \]

If we plug one equation into the other we get \((10 + \mu)(5 + \mu) = 50 + 15\mu + \mu^2 = 1\), and we get the following quadratic equation for \(\mu\):

\[\mu^2 + 15\mu + 49 = 0 \]

The solutions to this equation are

\[\left\{ -\frac{15 \pm \sqrt{29}}{2} \right\} \]
Now we can solve for x and y. The value $\mu = -\frac{15 + \sqrt{29}}{2}$ gives
\[
\frac{5 + \sqrt{29}}{2} x = y
\]
and when we plug this into $x^2 + y^2 = 1$ we get
\[
x^2 \left(1 + \left(\frac{5 + \sqrt{29}}{2} \right)^2 \right) = 1
\]
so
\[
x = \pm \frac{\sqrt{2}}{\sqrt{29} + 5 \sqrt{29}}
\]
\[
y = \pm \frac{\sqrt{2}}{2 \sqrt{29} + 5 \sqrt{29}}
\]
The value of the expression we want to maximize is:
\[
10 x^2 - 2 xy + 5 y^2
\]
\[
= 145 + 23 \sqrt{29}
\]
\[
= \frac{29 + 5 \sqrt{29}}{29 + 5 \sqrt{29}}
\]
\[
= 4.807417597
\]
Now we consider the second possibility for μ: $\mu = -\frac{15 - \sqrt{29}}{2}$. Here
\[
x = \pm \frac{\sqrt{2}i}{\sqrt{5 \sqrt{29} - 29}}
\]
\[
y = \pm \frac{i \left(\sqrt{29} - 5 \right)}{2 \sqrt{5 \sqrt{29} - 29}}
\]
where $i = \sqrt{-1}$. We get
\[
10 x^2 - 2 xy + 5 y^2
\]
\[
= \frac{23 \sqrt{29} - 145}{5 \sqrt{29} - 29}
\]
\[
= 10.19258241
\]
The norm of A is the square root of this, or 3.192582405.

Chapter A, § 0, 1.8(p.147) This follows by direct computation:
\[
(\alpha A + \beta I) v = \alpha Av_i + \beta Iv_i
\]
\[
= \alpha \lambda_i v_i + \beta v_i
\]
\[
= (\alpha \lambda_i + \beta) v_i
\]

Chapter A, § 0, 1.9(p.147) If v is any vector $(W^H v, v) = (W^H v, W^H v) \geq 0$ (since we are just calculating the squared 2-norm of the vector $W^H v$). If W is nonsingular, then WW^H will also be nonsingular, so its eigenvalues will all be nonzero, hence **positive**. The conclusion follows from 1.22 on page 144.
Chapter A, § 0, 1.10(p.147) This is similar to the previous problem, except that we must take the square root of A — see 1.23 on page 144. This square root is also positive definite (and Hermitian) and we get $WAW^H = WA^{1/2}A^{1/2}W^H = (WA^{1/2})(WA^{1/2})^H$ so the conclusion follows by the last exercise.

Chapter A, § 0, 1.11(p.147) Let

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Then all eigenvalues of A are 0, but $\|A\|_2 = 1$.

Chapter A, § 0, 1.14(p.165) The eigenvalues of $Z(A)$ turn out to be .9543253815, -0.8369505436, and -0.1173748380, so the spectral radius is .9543253815 < 1, and all of the iterative methods converge. The optimal relaxation coefficient for the SOR method is $2/(1 + \sqrt{1-.9543253815^2}) = 1.539919425$.

Chapter A, § 0, 1.15(p.165) If the matrix is consistently ordered, its associated graph has a linear coloring — 1.44 on page 161. In other words the graph associated with the matrix can be colored in such a way that the color-graph is a linear array of vertices. Now re-color this color-graph — simply alternate the first two colors. We can also re-color the graph of the matrix in a similar way. The result is a coloring with only two colors and the proof of the first statement of 1.44 on page 161 implies the conclusion.

Chapter A, § 0, 1.16(p.172) It is possible to determine whether the matrix A was singular by examining the norm of $R(B)$.

- If A was singular, then all norms of $R(B)$ must be ≥ 1. Suppose A annihilates form vector v. Then $R(B)$ will leave this same vector unchanged, so that for any norm $\| \cdot \|$, $\|R(B)v\| \geq \|v\|$.
- We have proved that, if A is nonsingular, then $\|R(B)\|_2 < 1$,

Chapter A, § 0, 1.18(p.172) In this case $\lg^2 n = 4$, so the constant must be approximately 3.25.

Chapter A, § 0, 1.20(p.173) The fact that the matrix is symmetric implies that $\|A\|_1 = \|A\|_\infty$. By 1.55 on page 170 $(n^{-1/2})\|A\|_1 = (n^{-1/2})\|A\|_2 \leq \|A\|_\infty$, and $\|A\|_2^2 \leq \|A\|_1 \cdot \|A\|_\infty = \|A\|_\infty^2$, so we have the inequality

$$(n^{-1/2})\|A\|_\infty \leq \|A\|_2 \leq \|A\|_\infty$$

Since the matrix is symmetric, we can diagonalize it. In the symmetric case, the 2-norm of the matrix is equal to the maximum eigenvalue, λ_0, so $(n^{-1/2})\|A\|_\infty \leq \lambda_0 \leq \|A\|_\infty$. It follows that

$$\frac{n^{1/2}}{\|A\|_\infty} \geq \frac{1}{\lambda_0} \geq \frac{1}{\|A\|_\infty}$$

Now suppose that $U^{-1}AU = D$, where D is a diagonal matrix, and U is unitary (so it preserves 2-norms)

$$D = \begin{pmatrix} \lambda_0 & 0 & \cdots & 0 \\ 0 & \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_n \end{pmatrix}$$
where $\lambda_0 > \lambda_1 > \cdots > \lambda_n > 0$. Then $U^{-1}(I - BA)U = I - BD$, and $I - BD$ is

$$
D = \begin{pmatrix}
1 - \frac{\lambda_0}{\|A\|_\infty} & 0 & \ldots & 0 \\
0 & \lambda_1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 1 - \frac{\lambda_n}{\|A\|_\infty}
\end{pmatrix}
$$

The inequalities above imply that

$$
1 \geq \frac{\lambda_0}{\|A\|_\infty} \geq \frac{1}{n^{1/2}}
$$

so

$$
0 \leq 1 - \frac{\lambda_0}{\|A\|_\infty} \leq 1 - \frac{1}{n^{1/2}}
$$

Now the smallest eigenvalue is λ_n so

$$
\frac{\lambda_n}{\lambda_0} \geq \frac{\lambda_n}{\|A\|_\infty} \geq \frac{\lambda_n}{\lambda_0} \frac{1}{n^{1/2}}
$$

and

$$
1 - \frac{\lambda_n}{\lambda_0} \leq 1 - \frac{\lambda_0}{\|A\|_\infty} \leq 1 - \frac{\lambda_n}{\lambda_0} \frac{1}{n^{1/2}}
$$

The maximum of the eigenvalues of $I - BD$ (which is also the 2-norm of $I - BD$ and of $I - BA$) is thus $1 - \frac{\lambda_n}{\lambda_0} \frac{1}{n^{1/2}}$. It turns out that $\frac{\lambda_n}{\lambda_0} = \frac{1}{\text{cond}(A)}$.

Chapter A, § 0, 2.3(p.196) Define the sequence $\{B_0, \ldots, B_{n-1}\}$ to be $\{f(0), f(2\pi/n), \ldots, f(2(n-1)\pi/n)\}$. Perform the Discrete Fourier Transform on this sequence, using $e^{2\pi i/k}$ as the primitive nth root of 1. The result will be the first n coefficients of the Fourier series for $f(x)$.

Chapter A, § 0, 2.4(p.196) The formula

$$
p(x) = u(x) + xv(x) + x^2w(x)
$$

implies that we get a formula analogous to equation (29) on page 187:

$$
F_\omega(A)(i) = F_\omega(A_{3t})(i) + \omega^i F_\omega(A_{3t+1})(i) + \omega^{2i} F_\omega(A_{3t+2})(i)
$$

where A_{3t} stands for the subsequence $\{a_0, a_3, a_6, \ldots\}$, A_{3t+1} stands for $\{a_1, a_4, a_7, \ldots\}$, and A_{3t+2} stands for the subsequence $\{a_2, a_5, a_8, \ldots\}$. If $T(n)$ is the parallel execution-time of this algorithm then

$$
T(n) = T(n/3) + 2
$$

so

$$
T(n) = 2\log_3(n) = \frac{2}{\lg 3} \lg n
$$

It follows that this algorithm is slightly slower than the standard FFT algorithm, but its parallel execution-time is still $O(\lg n)$.

Chapter A, § 0, 2.5(p.197) The answer is: Yes. This is a simple consequence of De Moivre’s formula:

\[e^{ix} = \cos x + i \sin x \]

which implies that we can get the Discrete Cosine Transform by taking the real part of the Discrete Fourier Transform. So, the FFT algorithms also gives rise to a Fast Discrete Cosine Transform. We can write down an explicit algorithm by using algorithm 2.7 on page 192 and De Moivre’s formula, and by separating the real and imaginary parts in each step. There are a few points to bear in mind when we go from a Discrete Fourier Transform to a Discrete Cosine Transform.

1. The size-parameter must be doubled. This is because the denominators in the cosine transform are 2n rather than n.
2. The original set of n elements \(\{ A_0, \ldots, A_{n-1} \} \) must be extended to a set \(\{ B_0, \ldots, B_{2n-1} \} \) of size 2n. This is because the size-parameter was doubled. We accomplish this by defining

\[
B_k = \begin{cases}
0 & \text{if } k = 2j \\
A_j & \text{if } k = 2j + 1
\end{cases}
\]

To see that this is the correct way to extend the n inputs, plug De Moivre’s formula into the original formula for the Discrete Fourier Transform (equation (23) on page 182) and compare the result with the formula for the cosine transform (equation (31) on page 196).

3. We must define \(\mathcal{C}(A)_m = Z_m \cdot \text{Re} \mathcal{F}_\omega(B)(m) \), for \(m < n \). This follows directly from De Moivre’s formula.

It is not hard to see that the behavior of the cosine and sine functions imply that \(\text{Re} \mathcal{F}_\omega(B)(2n - m) = \text{Re} \mathcal{F}_\omega(B)(m) \), and \(\text{Im} \mathcal{F}_\omega(B)(2n - m) = -\text{Im} \mathcal{F}_\omega(B)(m) \) so we could also define

\[
\mathcal{C}(A)_m = Z_m \cdot \frac{\mathcal{F}_\omega(B)(m) + \mathcal{F}_\omega(B)(2n - m)}{2}
\]

The result is the algorithm:

Algorithm 0.1. Let \(A = \{ a_0, \ldots, a_{n-1} \} \) be a sequence of numbers, with \(n = 2^k \). Define sequences \(\{ F_{ij} \} \) and \(\{ G_{ij} \} \), \(0 \leq r \leq k \), \(0 \leq j \leq 2^n - 1 \) via:

1. \(F_{0,2^j+1} = A_j, F_{0,2^j} = 0 \) for all \(0 \leq j < n; G_{0,r} = 0 \);
2. For all \(0 \leq j < 2^n \),

\[
\begin{align*}
F_{t+1,c_0(t,j)} &= F_{t,c_0(t,j)} + (\cos e(t,c_0(t,j))F_{t,c_1(t,j)} - (\sin e(t,c_0(t,j)))G_{t,c_1(t,j)}) \\
F_{t+1,c_1(t,j)} &= F_{t,c_0(t,j)} + (\cos e(t,c_1(t,j))F_{t,c_1(t,j)} - (\sin e(t,c_1(t,j)))G_{t,c_1(t,j)}) \\
G_{t+1,c_0(t,j)} &= G_{t,c_0(t,j)} + (\cos e(t,c_0(t,j))G_{t,c_1(t,j)} + (\sin e(t,c_0(t,j)))F_{t,c_1(t,j)}) \\
G_{t+1,c_1(t,j)} &= G_{t,c_0(t,j)} + (\cos e(t,c_1(t,j))G_{t,c_1(t,j)} + (\sin e(t,c_1(t,j)))F_{t,c_1(t,j)})
\end{align*}
\]

If we unshuffle the \(F \)-sequence to get a sequence \(F' = \{ F'_0, \ldots, F'_{2^n-1} \} \), we get the Discrete Cosine Transform by defining \(\mathcal{C}(A)_m = Z_m \cdot F'_{m,r} \), for \(0 \leq m \leq n - 1 \).

Chapter A, § 0, 2.9(p.200) The determinant of a matrix is equal to the product of its eigenvalues (for instance look at the definition of the characteristic polynomial of a matrix in 1.13 on page 140 and set \(\lambda = 0 \)). We get

\[
\det(A) = \prod_{i=0}^{n-1} \mathcal{F}_\omega(f)(i)
\]
in the notation of 2.10 on page 198.

Chapter A, § 0, 2.10(p.200) The spectral radius is equal to the absolute value of the eigenvalue with the largest absolute value — for the $\mathbb{Z}(n)$ this is 2 for all values of n.

Chapter A, § 0, 4.1(p.208) Here is a Maple program for computing these functions:

```maple
c0 := 1/4+1/4*3^(1/2);
c1 := 3/4+1/4*3^(1/2);
c2 := 3/4-1/4*3^(1/2);
c3 := 1/4-1/4*3^(1/2);
p1 := 1/2+1/2*3^(1/2);
p2 := 1/2-1/2*3^(1/2);

rphi := proc (x) option remember;
if x <= 0 then RETURN(0) fi;
if 3 <= x then RETURN(0) fi;
if x = 1 then RETURN(p1) fi;
if x = 2 then RETURN(p2) fi;
simplify(expand(c0*rphi(2*x)+c1*rphi(2*x-1)+
c2*rphi(2*x-2)+c3*rphi(2*x-3)))
end;

w2 := proc (x) simplify(expand(c3*rphi(2*x+2)-c2*rphi(2*x+1)+
c1*rphi(2*x)-c0*rphi(2*x-1)))
end;
```

Although Maple is rather slow, it has the advantage that it performs *exact* calculations, so there is no roundoff error.

Chapter A, § 0, 4.2(p.208) For a degree of precision equal to $1/P$, a parallel algorithm would require $O(\log P)$-time, using $O(P)$ processors.

Chapter A, § 0, 4.4(p.222) We could assume that all numbers are being divided by a large power of 2 — say 2^{30}. We only work with the numerators of these fractions, which we can declare as integers. In addition, we can compute with numbers like $\sqrt{3}$ by working in the extension of the rational numbers $\mathbb{Q}[\sqrt{3}]$ by defining an element of this extension to be a pair of integers: $(x, y) = x + y\sqrt{3}$. We define addition and multiplication via:

1. $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$;
2. $(x_1, y_1) \times (x_2, y_2) = (x_1 + y_1\sqrt{3})(x_2 + y_2\sqrt{3}) = (x_1x_2 + 3y_1y_2 + x_1y_2\sqrt{3} + x_2y_1\sqrt{3}) = (x_1x_2 + 3y_1y_2, x_1y_2 + x_2y_1)$.

We could even define division via2:

\[
(x_1, y_1) / (x_2, y_2) = \frac{x_1 + y_1\sqrt{3}}{x_2 + y_2\sqrt{3}} = \frac{x_1 + y_1\sqrt{3}}{x_2 + y_2\sqrt{3}} \cdot \frac{x_1 - y_1\sqrt{3}}{x_1 - y_1\sqrt{3}} = \frac{x_1x_2 - 3y_1y_2 + x_1y_2\sqrt{3} - x_2y_1\sqrt{3}}{x_2^2 - 3y_2^2}
\]

\[\text{We assume that } (x_2, y_2) \neq (0, 0).\]
The denominator is never 0 because $\sqrt{3}$ is irrational.

$$= \left((x_1x_2 - 3y_1y_2)/(x_2^2 - 3y_2^2), (x_1y_2 - x_2y_1)/(x_2^2 - 3y_2^2) \right)$$

This results in relatively simple closed-form expressions for basic operations on elements of $Q[\sqrt{3}]$.

Chapter A, § 0, 6.3(p.243) No, it is not EREW. It is not hard to make it into a calibrated algorithm, however. All of the data-items are used in each phase of the execution, so at program-step \(i\) each processor expects its input data-items to have been written in program-step \(i - 1\). It would, consequently, be fairly straightforward to write a MIMD algorithm that carries out the same computations as this. This is essentially true of all of the algorithms for solving differential equations presented here.

Chapter A, § 0, 6.4(p.243) The answer to the first part is no. In order to put it into a self-adjoint form, we re-write it in terms of a new unknown function \(u(x, y)\), where \(\psi(x, y) = u(x, y) / x\). We get:

\[
\begin{align*}
\frac{\partial \psi}{\partial x} &= -\frac{u}{x^2} + \frac{1}{x} \frac{\partial u}{\partial x} \\
\frac{\partial^2 \psi}{\partial x^2} &= \frac{2u}{x^3} - \frac{2}{x^2} \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} \\
\frac{\partial^2 u}{\partial y^2} &= \frac{1}{x} \frac{\partial^2 u}{\partial y^2}
\end{align*}
\]

so our equation becomes:

\[
\frac{2u}{x^3} - \frac{2}{x^2} \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} + \frac{2}{x} \left(-\frac{u}{x^2} + \frac{1}{x} \frac{\partial u}{\partial x} \right) + \frac{1}{x} \frac{\partial^2 u}{\partial y^2} = \frac{1}{x} \frac{\partial^2 u}{\partial x^2} + \frac{1}{x} \frac{\partial^2 u}{\partial y^2}
\]

Since the original equation was set to 0, we can simply clear out the factor of \(1/x\), to get the ordinary Laplace equation for \(u(x, y)\).

Chapter A, § 0, 6.5(p.243) This equation is essentially self-adjoint. It is not hard to find an integrating factor: We get

\[
\log \Phi = \int \left\{ \frac{2}{x + y} \right\} \, dx + C(y) = 2 \log(x + y) + C(y)
\]

so

\[
\Phi(x, y) = c'(y)(x + y)^2
\]

Substituting this into equation (71) on page 242, we get that \(c'(y)\) is a constant so that we have already completely solved for \(\Phi(x, y)\). The self-adjoint form of the equation it:

\[
\frac{\partial}{\partial x} \left((x + y)^2 \frac{\partial \psi}{\partial x} \right) + \frac{\partial}{\partial y} \left((x + y)^2 \frac{\partial \psi}{\partial y} \right) = 0
\]
Chapter A, § 0, 6.9(p.255) Recall the Schrödinger Wave equation

\[-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi = i\hbar \frac{\partial \psi}{\partial t}\]

and suppose that

\[
\left| \frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t} \right| \leq E_1 \\
\left| \frac{2n(\psi - \psi_{\text{average}})}{\delta^2} - \nabla^2 \psi \right| \leq E_2 \\
|V| \leq W
\]

Our numeric form of this partial differential equation is

\[-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi = i\hbar \frac{\partial \psi}{\partial t} = 0\]

We re-write these equations in the form

\[-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi - i\hbar \frac{\partial \psi}{\partial t} = 0\]

\[-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi - i\hbar \frac{\psi(t + \delta t) - \psi(t)}{\delta t} = Z\]

where Z is a measure of the error produced by replacing the original equation by the numeric approximation. We will compute Z in terms of the error-estimates E_1, E_2, and W. If we form the difference of these equations, we get:

\[Z = \left(-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi - i\hbar \frac{\partial \psi}{\partial t} \right) - \left(-\frac{\hbar^2}{2m} \nabla^2 \psi + V(x,y) \psi - i\hbar \frac{\psi(t + \delta t) - \psi(t)}{\delta t} \right)\]

So we get

\[Z = \frac{\hbar^2}{2m} \left(\nabla^2 \psi + \frac{4(\psi_{\text{average}} - \psi)}{\delta^2} \right) + i\hbar \left(\frac{\partial \psi}{\partial t} - \frac{\psi(t + \delta t) - \psi(t)}{\delta t} \right)\]

so

\[|Z| \leq \left| \frac{\hbar^2}{2m} \right| E_1 + |\hbar| E_2\]

Now we compute \(\psi(t + \delta t)\) in terms of other quantities:

\[\psi(t + \delta t) = \left(1 - \frac{2i\hbar \delta t}{m\delta^2} - \frac{i\hbar \delta t V(x,y)}{\hbar} \right) \psi + \frac{3i\hbar \delta t}{m\delta^2} \psi_{\text{average}} + \frac{i\hbar \delta t Z}{\hbar}\]

so the error in a single iteration of the numerical algorithm is

\[\leq \frac{\delta t}{\hbar} \left| \frac{\hbar^2}{2m} \right| E_1 + \frac{\delta t}{\hbar} |\hbar| E_2 = \frac{\delta t \hbar}{2m} E_1 + \delta t E_2\]

This implies that

\[(130) \quad \psi(t + \delta t) - \psi = -\left(\frac{2i\hbar \delta t}{m\delta^2} + \frac{i\hbar \delta t V(x,y)}{\hbar} \right) \psi + \frac{2i\hbar \delta t}{m\delta^2} \psi_{\text{average}} + \frac{i\hbar \delta t Z}{\hbar}\]
Now we estimate the long-term behavior of this error. The error is multiplied by the matrix in equation (130). We can estimate the 2-norm of this matrix to be
\[
\frac{2i\delta t}{m\delta^2} + \frac{i\delta t V(x,y)}{h} \leq \frac{4\delta t}{m\delta^2} + \frac{2\delta t W}{h}
\]
Our conclusion is that the errors dominate the solution quickly unless
\[
\frac{4\delta t}{m\delta^2} + \frac{2\delta t W}{h} < 1
\]
In general, this means that the iterative algorithm will diverge unless
\[
\delta t < \frac{1}{4\delta t + \frac{2W}{h}}
\]

Chapter A, § 0, 1.3(p.272) This is a straightforward application of the basic parallel-prefix scheme in algorithm 1.5 on page 269. We perform the following steps:

1. Assign a processor to each bit in the bitstring.
2. Each processor performs a Huffman decoding operation starting from its own bit-position. Each processor stores the string of decoded data that it finds. For some processors this procedure might not work: the string of bits that the processor sees might not be a valid Huffman encoding. In that case the processor stores some symbol indicating no valid string.

Chapter A, § 0, 1.4(p.275) One way to handle this situation is to note that the recurrence is homogeneous — which means that it has no constant terms. This implies that we can divide right side of the recurrence by a number \(\beta \) to get
\[
S_k' = \frac{-a_1}{\beta} S_{k-1}' - \frac{a_2}{\beta} S_{k-2}' - \cdots - \frac{a_n}{\beta} S_{k-n}'
\]
and this recurrence will have a solution \(\{S_i'\} \) that is asymptotic to \(a_1' / \beta \). Consequently, if we can find a value of \(\beta \) that makes the limit of the second recurrence equal to 1, we will have found the value of \(a_1 \). We can:

- carry out computations with the original recurrence until the size of the numbers involved becomes too large;
- use the ratio, \(\beta \) computed above, as an estimate for \(a_1 \) and divide the original recurrence by \(\beta \). The resulting recurrence will have values \(\{S_i'\} \) that approach 1 as \(i \to \infty \), so that it will be much better-behaved numerically.

Chapter A, § 0, 1.6(p.277) Just carry out the original algorithm \(\lg n \) times.

Chapter A, § 0, 1.7(p.277) Here we use the Brent Scheduling Algorithm on page 270. We subdivide the \(n \) characters in the string into \(n / \lg n \) substrings of length \(\lg n \) each. Now one processor to each of these substrings and process them sequentially using the algorithm 1.12 of page 277. This requires \(O(\lg n) \) time. This reduces the amount of data to be processed to \(n / \lg n \) items. This sequence of items can be processed in \(O(\lg n) \) time via the parallel version of algorithm 1.12.

Chapter A, § 0, 1.9(p.281) You could use this algorithm to perform numerical integration, but you would have to find an efficient way to compute the integrals
\[
\left\{ \int_a^b (x-x_0) \, dx, \ldots, \int_a^b (x-x_0) \cdots (x-x_{n-1}) \, dx \right\}
\]
Chapter A, § 0, 2.3(p.289) Assign 1 to each element of the Euler Tour that is on the end of a downward directed edge (i.e., one coming from a parent vertex) and assign -1 to the end of each upward edge.

Chapter A, § 0, 2.4(p.290) In each vertex, v, of the tree you have to store 2 numbers:

- $T(v)$: The number of subtrees of the subtree rooted at v that include v itself.
- $N(v)$: The number of subtrees of the subtree rooted at v that do not include v.

Initially all of these quantities are 0 (if we assume that a subtree has at least one edge). Suppose a vertex v has k children $\{v_1, \ldots, v_k\}$. Then

1. $N(v) = \sum_{i=1}^{k} N(v_i) + T(v_i)$;
2. $T(v) = 2^k - 1 + 2^{k-1} \cdot \sum_{i=1}^{k} T(v_i) + 2^{k-2} \cdot \sum_{i,j=1}^{k} T(v_i)T(v_j) \ldots$

Chapter A, § 0, 2.5(p.293) If some edge-weights are negative, it is possible for a cycle to have negative total weight. In this case the entire concept of shortest-path becomes meaningless — we can make any path shorter by running around a negative-weight cycle sufficiently many times. The algorithm for shortest paths given in this section would never terminate. The proof that the algorithm terminates within n ("exotic") matrix-multiplications makes use of the fact that a shortest path has at most n vertices in it — when negative-weight cycles exist, this is no longer true.

Chapter A, § 0, 2.6(p.293) It is only necessary to ensure that no negative-weight cycles exist. It suffices to show that none of the cycles in a cycle-basis (see § 2.6) have negative total weight. Algorithm 2.23 on page 330 is a parallel algorithm for computing a cycle-basis. After this has been computed, it is straightforward to compute the total weight of each cycle in the cycle-basis and to verify this condition.

Chapter A, § 0, 2.7(p.293) The answer is Yes.

Chapter A, § 0, 2.10(p.305) In the handling of Stagnant Vertices — see page 302. Here stagnant super-vertices are merged with higher-numbered neighbors.

Chapter A, § 0, 2.11(p.305) In the Tree-Hooking step in which we have the code $D_s(D_s(u)) \leftarrow D_s(v)$ in general several different super-vertices get assigned to the same super-vertex in this step, and we assume that only one actually succeeds. The CRCW property is also used in the merging of stagnant super-vertices and the step in which s' is incremented.

Chapter A, § 0, 2.13(p.311) As given on page 301, the Shiloach-Vishkin algorithm can’t be used to compute a spanning tree. The problem is that the D-array in the output of this algorithm doesn’t have the property that $D(i)$ is the smallest-numbered vertex in the component of vertex i. Consequently, the proof that the selected edges form a tree (on page 305) falls through.

Chapter A, § 0, 2.18(p.331) If we cut the graph out of the plane, we get a bunch of small polygons, and the entire plane with a polygon removed from it. This last face represents the boundary of the embedded image of the graph in the plane. It is clearly equal to the sum of all of the other face-cycles. Given any simple cycle c, in the graph, we can draw that cycle in the embedded image of the plane. In this drawing, the image of c encloses a number of faces of the graph. It turns out that c is equal to the sum of the cycles represented by these faces.
Chapter A, § 0, 2.25(p.333) The problem with this procedure is that the undirected spanning trees constructed in step 1 might not satisfy the requirement that each vertex has at least two children. In fact the tree might simply be one long path. In this case the algorithm for directing the tree no longer runs in $O(\lg n)$-time — it might run in linear time.

Chapter A, § 0, 3.1(p.347) Not quite, although it is tantalizing to consider the connection between the two problems. The circuit described on page 38 almost defines a parse tree of a boolean expression. Unfortunately, it really only defines an acyclic directed graph. This is due to the fact that the expressions computed in sequence occurring in the Monotone Circuit Problem can be used in more than one succeeding expression. Consider the Monotone Circuit:

\[
\{ t_0 = T, t_1 = F, t_2 = t_0 \lor t_1, t_3 = t_0 \land t_2, t_4 = T, t_5 = t_0 \lor t_3 \land t_4 \}\]

This defines the acyclic graph depicted in figure A.1.

It is interesting to consider how one could convert the acyclic graph occurring in the Circuit Value Problem into a tree — one could duplicate repeated expressions. Unfortunately, the resulting parse tree may contain (in the worst case) an exponential number of leaves — so the algorithm described in § 3 of chapter 6 doesn’t necessarily help. As before, the question of the parallelizability of the Circuit Value Problem remains open — see § 5.2 and page 38.

Chapter A, § 0, 3.3(p.347) We can omit the step described in 3.1 on page 334, and proceed to the parenthesis-matching step in 3.2 (on page 335). The rest of the algorithm is similar to what was described in the text, but we have to identify the operator as the first entry in a parenthesized list.
Chapter A, § 0, 3.6(p.398) Fermat’s little theorem says that $a^{p-1} \equiv 1 \pmod{p}$, if $a \neq 0 \pmod{p}$. This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$. It is possible to calculate a^{p-2} in $O(\lg(p-2))$-time with one processor, by repeated squaring.

Chapter A, § 0, 3.7(p.398) The answer is yes provided we represent polynomials as linear combinations of the form

\[\sum_i a_i'(x - x_0) \cdots (x - x_i - 1) \]

rather than the traditional representation as

\[\sum_i a_i x^{i-1} \]

We evaluate our polynomials at the data-points $\{x_j\}$ where $0 \leq j \leq n - 1$ and perform all of our computations with these values. When we are done, we use the interpolation formula to reconstruct the polynomial.

Chapter A, § 0, 1(p.398) Here is a Maple function that does this:

```maple
np := proc(p)
local i,tp,diff,prim,pr;
    tp := 2^p;
    for i from 2 to 2*p do
        diff := nextprime(i*tp) - i*tp;
        if diff = 1 then
            prim:=i*tp+1;
            pr:=primroot(1,prim)&^i mod prim;
            print(i,tp,prim,pr, pr&^(-1) mod prim,
                  tp&^(-1) mod prim, fi
            end;
    end;
end;
```

This function prints out most of the entries that appeared in table 6.1 for several different primes. It is called by typing `np(i)` in Maple, where i exponent of 2 we want to use in the computations (for instance, it represents the leftmost column of table 6.1).

Chapter A, § 0, 2.1(p.406) No. lv-textbfRNC=textbfRNC, because a Las Vegas algorithm produces a correct answer in a fixed expected number of executions — see 1.7 on page 405.

Chapter A, § 0, 2.2(p.409) Infinite. If we are extraordinarily unlucky there is no reason for any list-elements to ever be deleted.
Bibliography

87. S. Khuller, Extending planar graph algorithms to $K_{3,3}$-free graphs, Int. Comput. 84 (1990), 13–25.
95. D. J. Kuck, Evaluating arithmetic expressions of n atoms and k divisions in $a(\log_2 n + 2 \log_2 k) + c$ steps, unpublished manuscript, 1973.
115. Y. Meyer, Ondelettes et opérateurs, Hermann, Paris, FRANCE.
BIBLIOGRAPHY

128. D. Parkinson, Parallel efficiency can be greater than unity, Parallel Comput. 3 (1986), 261–262.
142. Satoshi Sekiguchi, Kei Hiraki, and Toshio Shimada, A design of practical dataflow language DFCLl and its data structures, Tr-90-16, Electrotechnical Laboratory, Tsukuba Science City, Ibaraki 305, Japan, 1990.
143. Satoshi Sekiguchi, Tsutomu Hoshino, and Toshitsugu Yuba, Parallel scientific computer research in Japan, Tr-88-7, Computer Systems Division, Electrotechnical Laboratory, Tsukuba Science City, Ibaraki 305, Japan, 1988.
156. , Data structures and network algorithms, SIAM, CBMS Series, Philadelphia, PA, 1983.
APPENDIX B

Index
1-factor (of a graph), 366
abelian group, 328
adjacency matrix of a graph, 291
adjoint of a matrix, 413
advantage (coefficient) of a Monte Carlo algorithm, 403
Alok Aggarwal, 331, 426
Alfred Aho, 334
M. Ajtai, 349, 365
AKS sorting algorithm, 365
cherry, 376, 377
Jean Le Rond, 262
d’Alembert’s solution of the wave equation, 262
algebraic number fields, 398
algorithm
 Interpolation, 278
 JPEG, 200
D. Alton, 331
Richard Anderson, 331, 426
approximation algorithms for NP-complete problems, 316
Argonne National Labs., 99, 100
artificial intelligence, 1
ASCEND algorithm
 butterfly computer, 63
 CCC network, 83
generic, 58
 hypercube computer, 67
 parallel prefix as an instance of, 59
 shift as an instance of, 60
 shuffle-exchange computer, 75
asymptotically optimal sorting algorithm, 365
asynchronous algorithms for parsing, 346
Ilan Bar-On, 334
basic wavelet, 203
K. E. Batcher, 18, 22, 23, 349, 365
Batcher merge algorithm, 22
Batcher Odd-Even Merge Algorithm, 23
BBN Butterfly Computer, 15
Michael J. Beckerle, 85
Bernoulli Method, 273
Dimitri P. Bertsekas, 173
Sandeep N. Bhatt, 67
bipartite graphs, 90, 366
bitonic halver, 20
bitonic sequence, 19
Allan Borodin, 426
Borůvka’s Algorithm, 316
O., 316
boundary element method, 266
G. J. Brebner, 101, 409
R. P. Brent, 45, 267
Brent Scheduling Principle, 45
Brent’s Theorem, 42
Christopher M. Brown, 66
bubble sort, 4
Comte Georges Louis Leclerc Buffon, 401
Buffon Needle Algorithm, 401
butterfly diagram, 187
C*
 (?)-operator, 117
 , = -operator, 117
 < ? -operator, 117
 > ? -operator, 117
 < stdlib.h >, 115, 122
allocate_shape, 115
allocate_shape function, 122
boolsizeof function, 122
deallocate_shape, 115
everywhere statement, 113
palloc function, 122
pfree function, 122
with-statement, 114
As-If-Serial Rule, 114
current processor, 110
dot notation, 106
dynamic allocation of shapes, 115
general communication, 122
grid communication, 122
Julia set Program, 117
Mandelbrot set program, 117
program for connected components, 298
program for matrix multiplication, 124
program for minimal spanning trees, 322
program for symbolic computation, 393
Replication Rule, 113
shape, 104
where-statement, 105, 112
with-statement, 105
calibrated SIMD algorithms, 54
Caltech Mark II computer, 71

CBLOCK array-allocator in Modula*, 130
CCC network
ASCEND algorithm, 83
DESCEND algorithm, 82
Cedar computer, 76
Census operations, 103
Chameleon, 100
A. CHANDRA, 293, 331
JIK CHANG, 344
N. S. CHANG, 346
characteristic polynomial of a matrix, 140
PAFNUST’ VOVICH, 230
I-NGO CHEN, 270, 293, 296
cherry of a vertex, 376, 377
Chimp, 100
FRANCIS Y. CHIN, 270, 293, 296, 329
Chinese Remainder Theorem, 393
Cholesky decomposition of a matrix, 178
chordal graphs, 332
A. T. CHRONOPoulos, 178
FAN R. K. CHUNG, 67
Circuit Value Problem, 38
circulant, 197
CM
indirect addressing, 121
Coarse-grained parallelism, 15
cobegin, 51
coen, 51
RICHARD COLE, 349
Cole sorting algorithm, 349
combinational network, 42
comparator, 18
comparator network, 18
complete graph, 86, 316
complete unshuffle permutation, 189
complex analysis, 241
complexity parameter, 30
computational network, 42
depth, 42
concurrent programming, 15, 46
condition number (of a matrix), 141
connected components, 293
algorithm of Hirschberg, Chandra and Sarawate, 293
algorithm of Shiloach and Vishkin, 301
Connection Machine, 101
'Lisp, 102
'C', 102
Julia set Program, 117
Mandelbrot set program, 117
program for implementing SOR, 240
program for solving a hyperbolic partial
differential equation, 263
program for solving a parabolic partial
differential equation, 252
program for solving an elliptic partial
differential equation, 238
shape, 104
CM-1, 15
CM-2, 15
CM-5, 16
CM-Fortran, 102
Paris, 102
consistency of a Monte Carlo algorithm, 403
consistently ordered matrices, 158
contracting map, 173
convergence of a wavelet-series, 218
STEPHEN COOK, 41
J. W. COOLEY, 186
DON COPPERSMITH, 137, 267
THOMAS H. CORMAN, 18
D. G. CORNEIL, 331
Cosmic Cube computer, 70
ROGER COTES, 226
Cramer’s Rule, 413
CRCW, 25
CREW, 25
L. CSANKY, 138, 174
cube-connected cycles, 77
current processor, 110
CYCLE array-allocator in Modula*, 130
cyclic matrix, 197
cyclic reduction algorithms, 267
N. G. DANIELSON, 185
Data-level parallelism, 17
KARABI DATTA, 177
INGRID DAUBECHIES, 204, 206, 212
Daubechies W_2 wavelet, 206
Daubechies W_4 wavelet, 208
deadlocks, 53
necessary conditions for, 53
DeBruijn network, 76
decision problems
logspace-reducibility, 37
P-reducibility, 37
reducibility, 37
decision problems, 37
degree of smoothness (of a wavelet), 205
ELIEZAR DEKEL, 346
DENENBERG, 41
XIAOTIE DENG, 40
depth of a computational network, 42
depth-first search, 331
DESCEND algorithm
Batcher merge as an instance of, 60
bitonic sort as an instance of, 58
butterfly computer, 62
CCC network, 82
generic, 57
hypercube computer, 67
LINDA implementation, 97
permutation as an instance of, 59
shuffle-exchange computer, 74
determinant, 139
deterministic finite automaton, 275
DFA, 276
diagonal matrix, 140
digraph, 85
E. W. Dijkstra, 52
Dining Philosopher’s Problem, 53
directed graph, 85
Dirichlet density theorem, 388
Discrete Fourier Transform, see also FFT
distributed databases, 85
divided differences, 278
Nathan Doss, 100
Doubling Algorithms, 44
doubling algorithms, 267
dynamic-programming, 291
D. Eckstein, 331
. Ececioğlu, 278
eigenspace, 140
eigenvalue, 140
eigenvector, 140
elliptic partial differential equation, general form, 233
elliptic partial differential equation, self-adjoint form, 233
encoding scheme, 30
Encore Multimax, 15
enumeration sorts, 349
ε-nearsort, 370
ε’-halving, 368
equation of a compressible fluid, 266
EREW, 26
especially self adjoint differential equations, 242
Euler φ-function, 385
Euler Tour, 284, 341
Euler’s Theorem, 386
evaluation of an arithmetic expression, 333
even function, 196
even permutations, 139
expander graph, 366
expander graphs, 91, 366
expected number of repetitions until success (in a Las Vegas algorithm), 404
V. Faber, 14
fan-in, 42
fan-out, 42
Fermat’s Little Theorem, 386
FFT, 182
C* program for integer form, 389
C* program for parallel computation of, 193
C* program for symbolic computation, 393
convolution algorithm, 183
inverse transform, 185
proof of algorithm, 186
use in symbolic computation, 184
finite element methods, 266
finite-difference equation, 273
Thierry Fleury, 346
Floyd’s Algorithm, 293
M. J. Flynn, 14, 16
Flynn taxonomy, 14
MIMD, 15
MISD, 16
SIMD, 14
SISD, 16
S. Fortune, 9, 29
Fourier series, 179
Hubertus Franke, 100
K. S. Fu, 346
Zvi Galil, 78
E. Gallopoulos, 278
Paul Roessel Garabedian, 240, 250
Garabedian Formula, 240
Michael Garey, 316
Joachim von zur, 427
Karl Friedrich Gauss, 137, 156, 174, 230, 239, 388
Gauss-Chebyshev Gauss, 230
GCD, randomized algorithm, 427
E. F. Gehring, 14
David Gelernter, 100
generic parallel algorithms, 57
Alan Gibbons, 338
Gibbs phenomena, 218
L. Goldschlager, 40, 41
J. P. Gram, 149
Granularity Problem, 85
memory access protocol, 90
graph, 85
1-factor, 366
adjacency matrix, 291
Borůvka’s Algorithm, 316
chordal, 332
complete, 316
connected components, 293
connected components
algorithm of Hirschberg, Chandra and Sarawate, 293
algorithm of Shiloach and Vishkin, 301
cycle, 327
cycle-basis, 328
depth-first search, 331
de edge-sum operation, 328
in-tree, 282
incidence matrix (of a bipartite graph), 413
out statement, 96
rdp statement, 97
rd statement, 96
tuple, 95
tuple space, 95
Linda, explanation of the name, 100
linear equations
JOR method, 154
Linear inequality problem, 40
linear programming, 40
linear speedup, 13
List Ranking Problem, 271
LOCAL array-allocator in Modula*, 130
logspace-completeness for P, 38
logspace-reducibility, 37
local data, 51
lower triangular matrices, 165
lowest common ancestors, 329
C. LU, 386
O. LUBECK, 14
A. LUBOTZKY, 366
MICHAEL LUBY, 332
PAUL LUKOWICZ, 14
RUSTY LUSK, 99
S. G. MALLAT, 209
Mallat Pyramid Algorithm, 208
Markov-processes, 273
D. MARR, 221
MasPar MP-1 computer, 71, 129
matrix
characteristic polynomial, 140
Cholesky decomposition, 178
circulant, 197
condition number, 141
cyclic, 197
determinant, 139, 174
diagonal, 140
eigenspace, 140
eigenvalue, 140
eigenvector, 140
Hermitian, 141
Hermitian positive definite, 144
Hermitian positive semidefinite, 144
Hermitian transpose, 138
inversion, 165
Jordan normal form, 178
lower triangular, 165
minimal polynomial, 140
norm, 140
nullspace, 140
positive definite
the JOR iteration-scheme, 155
similar, 141
Smith normal form, 178
spectral radius, 141
Unitary, 141
maximal independent set problem, 417
maximal matching of a graph, 410
Maximum flows, 41
R. MEHOTRA, 14
merging network, 19
Message Passing Interface, 100
CHRISTOPHER METCALF, 56
Y. MEYER, 221
GARY MILLER, 289, 346
MIMD, 15
Local data, 51
Ordered data, 52
Read-only shared data, 52
Reduction data, 52
MIMD algorithms, simulation on SIMD computers, 55
minimal spanning tree, 293, 315
MISD, 16
m_lock, 49
Modula* language, 128
molecule of a finite-difference equation, 238
Monotone circuit problem, 40
monotonically increasing functions, 24
Monsoon computer, 85
J. MORLET, 221
MPI, 100
m_unlock, 49
PHILIPP MUSSI, 346
J. NAOR, 332
natural logarithms, see also ln
NC Problems, 9
nCUBE computer, 70
network
combinational, 42
comparator, 18
computational, 42
computational, depth of, 42
merging, 19
sorting, 19
ISAAC NEWTON, 226, 278
Newton-Cotes integration formula, 226
degree parameter, 226
number of data points, 226
norm inequalities, 140
normal algorithm, 63
normal form of a matrix, 178, 427
Jordan, 178, 427
Smith, 178, 427
norms
matrices, 139
vector, 139
NP-complete, 316
nullspace, 140
numerical integration, 222
NYU Ultra Computer project, 76
odd permutations, 139
offline Turing machine, 32
Omega switch, 67
S. E. Orcutt, 167
ordered matrices, 158
Ostrowski-Reich Theorem, 240
out-tree, definition, 282
P-complete problems, 9
circuit value problem, 38
Gaussian elimination, 41
linear inequalities, 40
linear programming, 40
maximum flows, 41
monotone circuit problem, 40
multivalued dependencies, 41
P-completeness, 38
P-reducibility, 37
p4, 99, 100
pairwise independence, 418
Michael Palis, 344
Victor Pan, 138, 169, 170
Gregory M. Papadopoulos, 85
Paragon, Intel, 16
parallel code-generation, 347
parallel code-generation, 347
Parallel Prefix Problem, 269
Parallel Processing Thesis, 29
Parallel searching, 348
parallel tree contractions, 289
parallel-prefix algorithms, 44, 269
parenthesis matching algorithm, 335, 348
parity of a permutation, 139
D. Parkinson, 14
parsing, 333
bracket languages, 338
input-driven languages, 338
partial differential equation, 232
boundary element methods, 266
equilibrium, 233
essentially self adjoint, 242
Laplace’s equation, 233
multigrid methods, 241
Poisson Equation, 233
essentially self adjoint, 243
finite differences, 233
finite element methods, 266
hyperbolic, 261
Wave Equation, 261
mixed type, 266
parabolic, 250
Heat Equation, 250
Schrödinger Wave Equation, 250
telegraph equation, 262
Wolfgang Paul, 78
p-correctness of a Monte Carlo algorithm, 403
perfect matching, 410
perfect shuffle, 72
permutations
even, 139
odd, 139
parity, 139
Michael Philippson, 126
A. Phillips, 366
Nicholas Pippenger, 9
planar graphs, 331
planar linear programming, 40
Pointer Jumping, 271
T.-C. Pong, 346
postfix form, parallel algorithms for, 346
PRAM computers
physical, 14
precedence grammars, 333
Franco Preparata, 57, 77, 349
Preparata sorting algorithm, 349
Prime number theorem, 388
Principle of Unitary Speedup, 13
Probabilistic Algorithms, 401
textbRNC algorithms, 405
Las Vegas algorithms, 404
expected number of repetitions until success, 404
m-textbRNC algorithms, 406
Monte Carlo algorithms, 403
p-correctness, 403
y-based, 403
advantage (coefficient), 403
consistency, 403
numeral, 401
probabilistic independence, 418
Procedure-level parallelism, 17
propagation of error, 252
pseudo-contracting map, 173
PVM, 100
quadrature formulas, 222
quantum mechanics, 250
race-condition, 48
V. Ramachandran, 331
Vijaya Ramachandran, 346
rank of a matrix, randomized algorithm, 427
reconstruction algorithm for wavelets, 219
recreancy-relations, 273
reducibility, 37
E. Reghbat, 331
John Reif, 138, 169, 170, 289, 331, 427
relatively prime numbers, 393
relaxation coefficient, 155
Relaxation method, 151
Richardson iteration scheme, 164
Ronald L. Rivest, 18
Arnold L. Rosenberg, 67
nondeterministic, 35
offline, 32
W. T. Tutte, 411
Tutte matrix, 411
Tutte matrix of a graph, 416
Tutte’s Theorem, 416

Jeffrey Ullman, 32, 275, 334
Ultracomputers, 76
unambiguous grammars, parsing, 346
undirected graph, 85
undirected graphs, 282
undirected tree, definition, 282
unshuffle permutation, 189
Eli Upfal, 85, 86, 410, 411

Leslie Valiant, 101, 349, 409
Valiant merge algorithm, 349
Stephen Vavasis, 138
Umesh Vazirani, 411
Vijay Vazirani, 411
vector-space, 138
vectors
Gram-Schmidt orthogonalization
algorithm, 149
orthogonal, 148
orthonormal, 148
U. J. J., 176
Uzi Vishkin, 288, 294, 301, 334
Jean Vuillemin, 57, 77

Wave Equation, 261
wavelets, 202
convergence of a wavelet-series, 218
degree of smoothness, 205
example wavelet-series, 212
reconstruction, 219
scaling functions, 203
weight function, 315
weight matrix of a graph, 291
weighted graph, 315
A. B. White, Jr., 14
A. Wigderson, 411
Avi Wigderson, 85
C. Wilson, 41
Jet Wimp, 273
Schmuel Winograd, 137, 267
M. Wloka, 56
work performed by an algorithm, 44
J. Wyllie, 9, 29

y-biased Monte Carlo algorithms, 403
Yaakov Yesha, 14
Toshitsugu Yuba, 85

Yixin Zhang, 332